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Summary

The Poligon system is a new, domain-independent language and attendant support envi-
ronment, which has been designed specifically for the implementation of applications using
a Blackboard-like problem-solving framework in a parallel computational environment.

This paper describes the Poligon system and the Poligon language, its salient and novel
features. Poligon is compared with other approaches to the programming of parallel sys-
tems.

1. Introduction

The larger project of which Poligon is only a small part will not be discussed here in any
detail. Design decisions made in other parts of the project will be held to be axiomatic,
though some mention of these decisions will be made in order to show the motivation for
the features of Poligon. The primary objective of the overall project is to achieve significant
speedup of knowledge based systems, particularly those directed at real-time ,ignal under-
standing.

The purpose of the Poligon language is to express the problem solving behaviour of human
experts in order to map them onto a problem snlving framework, which will run on simu-
lated parallel hardware.

The fields of knowledge representation and problem solving are rich and complex. This
paper will not go into any great detail in describing the problem solving processes in-
volvel. Poligon tries usefully to express knowledge both in a declarative and procedural
sense, through rules [Davis 77]; and in a structural sense, through the configuration of the
solution space. These will be described below.

Some crucial design criteria and early design commitments have affected the development
of Poligon, the consequences of which will be described in this paper. These can be sum-
marised as follows.

" Poligon is intended to be a language for both problem solving and the general pur-
pose programming necessary to support it. Unlike most programs, Poligon pro-
grams must also address the problems of real-time processing, including asyn-
chronous events and input data backup. Poligon, therefore, must assist in this re-
spect.

" The overall project's strategy is to solve problems significantly faster than existing
systems through the exploitation of parallelism. Poligon is targeted at a MIMD,
distributed-memory, message-passing machine with -thousands of processors.
This hardware gives direct support for futures, remote objects and such efficient
message-passing strategies as Broadcast and Multicast so as to take full advantage
of its processor interconnection network.

" A consequence of the desire to achieve a significant order of parallelism in Poligon
programs is that many of the control mechanisms used in serial problem solving
systems, such as schedulers and event queues, have been discarded because they
are highly serial. Most actions in Poligon programs are, therefore, performed
asynchronously. Rules, the primary mechanism in Poligon for describing things
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and for getting things done, are activated as daemons. Much of the work in

Poligon is aimed at providing mechanisms to cope with this chaotic behaviour.

This paper contains the following;

* A discussion of related work in parallel languages.

* A discussion of the design approach guiding the development of Poligon.

• A description of the abstraction mechanisms provided by the Poligon system with
some small examples.

* Some concluding remarks.

* References for further reading on the subject.

1. 1. Knowledge Representation and Problem Solving in Poligon

The primary purpose of this paper is to discuss the Poligon language. It is, however, not
possible completely to divorce this from the underlying hardware and from its purpose;
knowledge representation and problem solving.

Poligon can be described loosely as a "Blackboard System". What this meatis in practice is
that the problem solving metaphor of Poligon is one of cooperating experts gathered around
a blackboard, posting ideas about their deductions on the blackboard. For an exposition on
the term "Blackboard System" the reader is encouraged to read [Nii 86]. Poligon tries use-
fully to express knowledge both in a declarative and procedural sense, through rules and
functions; and in a structural sense, through the configuration of the solution space on the
blackboard. In particular, the term "blackboard" will be used to describe the set of all of
the nodes in the solution space of the system.

The suggestion that Poligon is a blackboard system is a little controversial. There are a
number of respects in which this is not a satisfactory label. This term will, however, be
used freely from now on for lack of a better label. The reader is encouraged to substitute
for the term "Blackboard system" any term, such as "Frame System" which seems best to
fit his mental model of what is being described.

1.2. Poligon's Model of Parallelism

It seems appropriate here to describe Poligon's model of parallelism. In its simplest form
this can be thought of as An Element in the Solution Space as a Processor.

This gives some idea of the granularity that is being sought. It is, however, by no means
the most efficient way to implement Poligon. Poligon programs want to be able to execute
rules and parts of rules associated with a particular Node in the solution space in parallel.
These rule activations need processors, on which to execute.

Thus a modified version of Poligon's model of parallelism could be A Rule Activation as a
Process, with sufficient processors to cope with the parallelism exhibited by the rule during
its activation. This tends towards a mapping of solution space elements onto a cluster of
processors to service the rule activations. In practice, however, a number of nodes might
be folded over the same set of processors, either because nodes become quiescent or be-
cause the load balancing in the system is sub-optimal.
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2. Related Work

Work in this field falls into two distinct categories; work on parallel knowledge based sys-
tems and work on languages for parallel symbolic computation. The former is, at present,
a very sparse field and, will not be discussed here, though some references are given in
Section 6. The latter is much more highly developed.

Much work is already being done on parallel languages for general computation. Amongst
these languages are Actors, MultiLisp andQLisp on the one hand and concurrent logic
programming languages and purely functional languages on the other. Often missing from
this work is a thrust toward the investigation of large applications in parallel domains, for
instance the development of parallel knowledge representation and problem solving sys-
tems. This is, of course, what Poligon attempts to do. This section will discuss briefly
Actors, QLisp and Multilisp, since these are the parallel symbolic computation languages
which are most relevant to the development of Poligon and the software which lies beneath
it.

2.1. Actors

Actors [Hewitt 73] probably come the closest in their behaviour to Poligon, at least at an
implementation level. Actors are independent, asynchronously communicating objects. As
is the way with purely object oriented systems they communicate only through message
passing and have tightly defined operations. The mutual control of Actors an parallelism is
achieved by the support of procedure call and coroutine model message passing. The
modularity afforded by this sort of programming metaphor may well be especially useful
for the programming of distributed-memory, message-passing hardware, since having a
close match between the hardware and software metaphors is likely to achieve better per-
formance. It is not in any way surprising that the operating system level software, which
underlies Poligon, is founded on many of the same principles as Actors. It has yet to be
seen whether this programming methodology is able in practice to extract significant
amount of parallelism from problems, though clearly this project hopes that it is.

2.2. MultiLisp and QLisp

MultiLisp [Halstead 84] and QLisp [Gabriel 84] are lumped together because, at least in
some senses, they have strong generic resemblances. They are both, at the user level, ex-
tensions to existing Lisp dialects which provide mechanisms for the expression of paral-
lelism, such as parallel Let constructs and parallel function argument evaluation (QLet and
PCall). It is assumed by both of these systems that the hardware at which they are targeted
is a form of shai'ed-memory multiprocessor. Although there is no particular reason why
such systems could not be implemented on a distributed-metory system, they are opti-
mised for shared-memory multiprocessors. These are currently the most readily available
form of multiprocessor. They would, however, need significant extensions in order to be
able to exploit a distributed-memory system as is shown in CAREL[Davies 86], an im-
plementation of QLisp for distributed-memory machines. The assumption of shared-mem-
ory, MIMD processors in these systems imposes constraints on the languages. They as-
sume, at least to an extent, that processes will be expensive and that the user must have
control over their creation. Poligon assumes quite the opposite.

4-4



3. The Design of Poligon

Poligon will be discussed first in terms of the way in which the language relates to the
problems being solved and its underlying systems. Next the language will be discussed in
terms of the requirements for languages in general and parallel languages in particular.

3.1. Background and Motivation

The philosophy behind the design of Poligon comes from intellectual and pragmatic pres-
sures. It attempts to steer a middle course between the extreme purism of applicativists and
the extreme pragmatism of the proponents of side-effects.

From the outset, the project was oriented towards real-time problem solving. Blackboard
systems are well known to be of interest as tools in the knowledge engineer's toolkit. Little
work has been done to investigate the appropriateness of the blackboard metaphor to paral-
lel execution or the meaning of parallel blackboard systems, though it is frequently claimed
that they are full of latent parallelism. The excellent formal properties of pure applicative
and logic languages may well be of little use in a system which, for whatever reasons,
needs to express side-effects and which has to cope with real-time constraints. Poligon is a
system in which some of the formal rigour of truly applicative systems has been put aside
in favour of a pragmatic approach to the exploitation of parallelism.

The BBI project [Hayes-Roth 85], also a project at the HPP, is an attempt to investigate
the behaviour of highly controlled problem solving sysicins. It attempts to use a great deal
of reta-knowledge and makes significant use of globality of reference in order to support
an holistic view of its solution space, thus providing a basis for meta-level reasoning. The
Poligon project is an attempt to investigate quite the reverse. Poligon has very little support
for meta-knowledge and allows no global data or global view of the solution space whatso-
ever, The purpose of this experiment is to determine whether a system, unconstrained by a
great deal of serialising control knowledge, might still be able to find useful answers faster
than an highly controlled system, such as BB1, which would be extremely difficult to
speed up significantly through parallelism.

The Poligon system pictures the elements in its solution space as processes resident on pro-
cessors distributed across a grid, with the code necessary for them intimately associated
with them. Because no global control is permitted in Poligon the activation of rules is nec-
essarily completely daemon-driven.

The project hopes to achieve significant speed-up through parallelism. This can be done
only if much parallelism is extracted from the problem. Ideally, the system would try to
achieve its parallelism by exploiting parallelism in the program's implementation at a very
fine grain. This can, in principle, extract the maximum amount of parallelism available.
On its own it has drawbacks, however. The costs of processes and the problems of syn-
chronisation at a fine grain size make it difficult to exploit such parallelism without the use
of hardwrare mechanisms significantly different from those available with prevailing tech-
nologies. This approach is also only part of the story. It neglects the fact that a properly
parallel decumposition of the source problem is crucial to finding a lot of parallelism. One
could summarise the problems, therefore, as expressing the problem in a sufficiently paral-
lel fashion and the matching of tht. parallelism in the program to the grain size of the under-
lying hardware. Poligon addresses these issues.

Parallelism is , ery hard to find in conventional programs. Applicative systems have an ad-
vantage in this respect because of their relative lack of need to express parallelism explic-
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itly. Their unchanging semantics when parallelism is introduced eases matters consider-
ably. Poligon has attempted to learn from this and has pure applicative semantics in a
number of areas but takes a different approach-to the finding of parallelism in programs. It
attempts to execute everything in parallel that it can and leaves it to the programmer to find
any serial dependencies.

When the parallelism in a program is user-defined, problems can result from an inappro-
priate match between the granularity of the parallelism expressed in the program and the
granularity of the underlying machine. In systems of the size and complexity of a typical
Poligon application such a match would be particularly difficult to find because of the large
number of processors involved and because it would be difficult for the user to keep track
of the location of his data in the processor array. These characteristics are a consequence of
the highly variable and data dependent state of the solution space in such programs.
Poligon, because of its structure, should be able largely to obviate such granularity mis-
matches because parallelism is defined and controlled by the system and the Poligon system
is closely matched to the granularity of the underlying system.

It is often thought that problems suitable for solution by means of the blackboard model
tend to partition their solution spaces into what look rather like pipe-lines. Pipe-lines are,
of course a well known form of parallelism. In practice pipes in such systems are not pipes
in the normal sense, since they are more like "leaky" pipes. It is one of the prime objec-
tives of these systems to reduce the amount of data as it percolates up through the abstrac-
tion hierarchy of the solution space. Because of the reduction in the data rate flowing in
these pipes the contention problems that one might expect when pipes are connected into
trees, as they often are, are alleviated.

A significant limitation of the performance of pipelines is that, at best, the parallelism that
they can produce is proportional to the length of the pipe. This would typically be only of
the order of half a dozen sections. This is clearly not the "orders of magnitude" of perfor-
mance improvement that we all hope for. In practice, though, given a large enough prob-
lem, it is often possible to set up a large number of these pipes side-by-side. It is one of
the major objectives of the Poligon language to encourage, facilitate and reward the decom-
position of problems so that this form of independence can be exploited, so that such pipes
will be created by the system.

3.2. Language Requirements

Poligon is a language which is by no means directed at general computation. It is neverthe-
less intended to be used for the solution of large, complex problems on distributed-memory
parallel hardware. The following is a brief list of the ways in which Poligon attempts to
address some of the primary requirements of programming languages.

• The language should provide a tangible method of expressing the ideas of the pro-
grammer.

The Poligon language has been written with considerable input from those with ex-
perience in problem solving systems in the application domains at which it is tar-
geted. It is therefore intended to match the ideas of the "Expert", whose knowledge
is to be encoded, but in a domain independent way.
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" The compiler should provide a mapping between the language and the underlying
systems, be they hardware or software.

Poligon's compiler compiles Poligon language source into code understood by the
underlying Lisp system and the concurrent object-oriented operating system run-
ning on its target hardware.

" The language should abstract the programmer from its underlying systems.

The Poligon system shields the user from all aspects of the underlying hardware
such as the topology of the processor network, the message-passing behaviour of
the hardware and the location of any code or data within the network.

* The language should provide mechanisms for the exploitation of the underlying
systems to good effect.

The underlying hardware and software systems are exploited in a number of ways
in Poligon. Firstly the language encourages the user naturally to decompose his
problem into a form which will map efficiently onto the underlying hardware.
Secondly the language offers a number of application-independent, high-level con-
structs, which are designed to exploit the hardware to the full. These topics are
covered more fully in Section 4.

* The language should allow the development of software faster than would be the
case if it were to be developed in a less abstract form.

Considerable effort has been spent on making the Poligon language a high level
way to describe the solutions to parallel knowledge based system problems. A high
level language with such features as infix, user-definable operators and user defin-
able syntax, provides a natural way for the expert to implement his knowledge.

Much effort has been spent also on integrating the Poligon system cleanly into the
program support environment of the Lisp Machines on which it runs. For instance,
incremental compilation is supported from within the editor.

" The language should assist the development of reliable, maintainable and modular
software.

Language features are provided to minimise the possibility of inconsistent modifi-
cations to the source code and the structure of the language and its semantics are
defined in a manner which minimises the probability of complex bugs being intro-
duced by asynchronous side-effects.

A sophisticated set of debugging facilities is provided. A system that emulates the
semantics of full, parallel Poligon programs as closely as possible in a serial envi-
ronment has been produced. The user is able to debug his program serially to re-
move all possible serial bugs and bugs due to the non-deterministic execution order
of Poligon programs before it is ported to the full parallel environment.

1The term Compiler is used in its most general .ense here, perhaps an interpreter or a machine which is

clever enough to execute the language specified directly.
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In addition to these requirements a language targeted at parallel hardware should have a

number of attributes which reflect the parallel nature of the target hardware.

• The language should address the granularity of the hardware.

Poligon is closely matched to the granularity of the hardware at which it is targeted.
It is generally expected that the solution space of the problems addressed by
Poligon programs will have of the order of thousands of nodes. This is of the same
order as the granularity of the hardware.

" The language should provide a mechanism for the extraction of parallelism from
programs and from the programmer.

Poligon extracts parallelism from programs and the programmer in two main ways.
First the decomposition of the problem is encouraged to be as modular as possible.
Secondly the semantics of Poligon programs are such that almost all of the program
can be executed in parallel without changing their behaviour from that seen during
serial execution. This allows the system to execute most operations in parallel if it
has the resources to do so.

• The language should, where appropriate, shield the programmer from those details
of the hardware which are particular to parallel computing engines, such as topol-
ogy.

The hardware, on which Poligon programs runs, causes Poligon programs to have
to cope with communication between solution space elements on different processor
sites. All such message passing is hidden from the user. In fact the Poligon lan-
guage has no concept of message-passing at all.

Futures are used for all remote operations in the user's program. The lardware
implements these such that there is no efficiency penalty associated with G;reating
futures for such remote accesses. The Poligon language copes with these invisibly
to the programmer.

As can be seen quite easily from the above one of the factors that must be well understood
before a language is designed is the general-purpose of the language and the level of gen-
erality that is expected of programs written in it. A language, whose sole purpose is the
expression of solutions to huge matrix problems on systolic hardware might well be justi-
fied in expecting the programmer to express, at quite a low level, the mapping of the pro-
gram onto the hardware provided. This is less likely to be a reasonable expectation of a
language targeted at the solution of large, complex problems of an unpredicatable, dynami-
cally-varying or data-dependent nature. Poligon is a fairly general purpose programming
language with a very definite bias.

4. Abstractions in Poligon

To cope with Poligon's view of parallelism and with the chaotic execution of rules (see
Section 1) a number of linguistic abstractions are provided.Poligon provides abstractions
for knowledge representation, control, data, parallelising, real-time and side-effect control.
These will be described briefly in this section.
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4. 1. Knowledge Representation

Knowledge is traditionally represented in blackboard systems in a number of ways, listed
below.

• Declarative Knowledge is encoded in Rules.

" Procedural Knowledge is encoded in procedures.

* Knowledge concerning the sequencing of activities is encoded in the scheduling
mechanism.

" Knowledge about the structure of the solution space is encoded by the definition of
the structure of the blackboard.

" Knowledge about relationships between the objects in the system is often encoded
using a Link mechanism.

These all represent knowledge about the application domain. In addition, there is in any
program a large body of implicit knowledge concerning the semantics of assignment, se-
quencing and the system's function as a whole, especially in for systems with poor formal
properties. This will not be discussed here. The Poligon language does, however, go to
considerable effort to make the semantics of the Poligon system as clear as possible.

4.1.1. Declarative Knowledge

The encoding of Declarative Knowledge in blackboard systems is conventionally done in
Rulest, which exist within scheduling units known as Knowledge Sources. Poligon also
has the concept of Rules and Knowledge Sources, though their meaning is somewhat dif-
ferent. Unlike serial blackboard systems, the rules in a Poligon system are activated au-
tonomously and asynchronously.

Existing blackboard systems usually suffer from a confusion and overloading in the se-
mantics and purpose of knowledge sources. It is useful to collect one's knowledge of one
subject together into one chunk. These chunks are knowledge sources. Sadly, the imple-
mentors of blackboard system frameworks often think of knowledge sources as scheduling
units and thus design their scheduling strategies around the idea of the "invocation of
knowledge sources", even though it is by no means necessarily the case that it is appropri-
ate to schedule all of knowledge in a chunk at the same time. This has a detrimental effect
on the modularity of the system.

In Poligon, knowledge sources are used as linguistic and software engineering abstractions
provided for the programmer in order to allow him to collect related knowledge together.
There are no scheduling semantics associated with knowledge sources in Poligon. Because
of the underlying system's daemon-like rule triggering mechanism the rule writer is al-
lowed completely to decouple the concept of scheduling from the concept of chunks of
knowledge.

lThe term Rule is used here in the sense of "Pattem/Action pairs". It should be noted that these are quite
unlike the structures Lalled rules used, fur instance, in Prolog. Pattern/Action rules move towards a
solution to their problem b) performing bide-effocts on their environment, in this case the blackboard, not
through unification.
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Rules are activated as a result of "events" happening to the fields of nodes (see Section
4.3.1). These events can be caused either by a write operation to a field, by a semaphore
being waved at a field or by the real-time clock.

A powerful Expectation mechanism is provided, which allows the dynamic placement and
specialisation of rules. An Expectation is a way of expressing model-based knowledge.
Given a particular model of the behaviour of a system, certain changes might be expected if
the model's interpretation of the world is correct. Expectations allow such changes to be
watched and even allow their associated rules to be triggered if the changes do not happen
in a given time. Such expectations can be placed to watch for events happening, or not
happening, in specific places on the blackboard, at specific times. Expectations provide a
focussing mechanism and, coupled with the system's ability to trigger 2 rules and "time-
out" unsatisfied Expectations on the basis of the real-time clock, Poligon allows complex
time-critical knowledge to be expressed and applied simply.

An example rule is shown in Figure 1.

The following is a trivial example rule, which shows a small set of the features of
Poligon. This rule could be interpreted as saying; "If the most recent two phonemes that
have been seen are "oo" and "ph" then the word is "foo". Having concluded this the rule
finds the set of sentence components, which represent potential conclusions of the word

'foo", and sets them so that they are no longer marked as hypothetical. It also makes
aSentence-Component type node, which represents the word 'foo", which has been found.

Rule : Find-the-word-Foo
Class : Phoneme

I Class of nodes with which the rule will be associated
Field : uncorrelated-phonemes

I Try to activate this rule when this field is changed
Definitions :

all-phonemes-in-order -The-Phoneme--4uncorrelated-phonemes
{ The operator ")T" returns all values in a field in
{ time order. The-Phoneme represents the node, that I
{ triggered this rule )

most-recent-phoneme -all-phonemes-in-order- Head
next-most-recent-phoneme a all-phonemes-in-order. Tail -Head

( Head and Tail are like CAR and CDR only they operate
( on lists, Lazy lists and Bags

Condition Part :
When : all-phonemes-in-orderlength-of-list > 2

{ The "When" part is a locally evaluable precondition }
If most-recent-phoneme.Sound = "oo"

And next-most-recent-phoneme*Sound = "ph"
{ The precondition for the Rule }

Action Part :
Definitions

new-sentence-component
-New Instance of Sentence-Component

lit should be noted that the term FoLuSSing meLhanism is used in a more general sense than by many
blackboard systems. There can be any number of such foci all acting in parallel in a Poligon program. The
expectation mechanism is another way of applying knowledge in order to take advantage of some local
circumstances in order to solve a problem more efficiently or cleanly.
2A rule is said to have been Triggered when it is activated so that it tries to evaluate its preconditions and
body.
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The creation of the new Sentence-Component node }
hypothetical-foos a
A Bag of words, which are "foo"

Subset of Words which satisfies
X (a-word)

a-word-hypothetised And a-wordletters = [ f o o
End)

Process all elements in the Bag hypothetical-foos }
Changes :

In Parallel for each a-word in hypothetical-foos
Change Type : Update
Updated Node : a-word
Updated Fields : hypothetised <- nil

Set fields of new sentence component in }
{ parallel with updating the elements in the Bag I

Changes :
Change Type : Update
Updated Node : new-sentence-component
Updated Fields : letters <- C f o o I

constituents (-
List (next-most-recent-phoneme,

most-recent-phoneme)

All of the actions taken by this rule are performed in parallel, since they are independent
of one another, though there is, of course, a serial dependency between the condition part

and the action part of the rule.

Fig. 1. An example Poligon rule

4.1.2. Procedural Knowledge

Procedural Knowledge is an all encomDassing term usually used indiscriminately to de-
scribe both knowledge about the relatic. ;hips between values (Functions) and the mecha-
nisms for performing side-effects and for sequencing events (Procedures). This is often a
result of such systems being built on top of Lisp systems, which fail to draw distinctions
between procedures with side-effects and those without. Poligon does not allow the
encoding of arbitrary knowledge into procedures. Only side-effect free functions are
allowed. Side-effects are permitted only in the bodies of rules, where they can be
controlled.

4.1.3. The Sequencing of Activities

In most blackboard systems knowledge of the required sequencing of events at a macro-
scopic level is expressed by the implementation of the system's scheduler. In many cases,
such as AGE [Nii 79] this scheduler has fixed characteristics and the application has a fixed
interface to it. In others, such as MXA [Rice 84], the user can specify the characteristics of
the scheduling of knowledge sources. Poligon provides no such mechanism. Since all
rules are activated as daemons, entirely asynchronously, the only analogue of scheduling is
the implicit sequencing of the activation of rules due to some rules causing changes that
trigger other's rules.

4.1.4. The Structure of the Solution Space

Poligon is unlike most blackboard systems in this respect. Most blackboard systems parti-
tion the blackboard into Levels, which represent the hierarchy of abstraction in the solution
space. Poligon uses a much more general representation which is like that of some Frame
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systems, providing a "Class" mechanism with user defined classes and metaclasses, and
compile-time and run-time inheritance. The functionality of the class mechanism in Poligon
is a superset of that of the levels provided by most blackboard systems. The programmer
can, of course, represent his solution simply using classes as levels in Poligon if he
wishes. Classes are discussed more in Section 4.3.1.

4.1.5. Knowledge about Relationships

Relationships between entities in blackboard systems are often expressed by a form of Link
mechanism. Sometimes this link is not so much a part of the system as a reflection of the
fact that fields in nodes can have as their values other nodes in the system. Other systems
have more sophisticated mechanisms that express links explicitly and allow property inheri-
tance along links, e.g. BB 1, or the propagation of likelihood, e.g. MXA.

Poligon has a number of system defined relationships; "Is an Instance of", "Is a part of"
and "Is a subclass of". The user can define arbitrary relationships between nodes on the
blackboard. These links allow property inheritance and are, themselves, represented as
nodes and so can have attributes in the same way that any other nodes can. Links are there-
fore first-class citizens in Poligon and they allow Poligon programs to act like semantic
nets.

4.2. Control Abstractions

The flow of control is a rather evanescent concept in a Poligon program. Any rule can be
triggered at any time. It is important not to think of the control flow in a Poligon program
in the same terms as that of a conventional serial program. There is a well defined flow of
control within rules; the action part of a rule is activated after" .. dition part, upon
which it is predicated. Apart from this, however, there is no flow o, control in any normal
sense. It should be noted also that what little flow of control there is only specifies the
strict ordering of activities. The execution of a sequence of actions can be interrupted at
any time. The size of the atoms for Poligon's atomic actions is very small.

The triggering of rules is controlled by the user associating rules with particular fields of
nodes or classes of nodes on the blackboard. The triggering of rules occurs when a field,
which is being watched in such a manner, is updated or is semaphored. A semaphore
mechanism is provided to allow rules to be triggered without a field being updated. This
provides a form of explicit event-based programming, if it is needed.

Clearly one of the objectives of the design of the Poligon language is to provide a language
in which it is simple to express logically distinct pieces of knowledge, independent of other
such pieces of knowledge. The decomposition of the problem in this manner causes the
system to appear to iterate towards the solution of its problem by small, simple and discrete
steps, rather than by complex, giant leaps.

4.3. Data Abstractions

Poligon provides a number of distinct data abstractions. One is characteristic of other
blackboard systems, one of pure functional languages and one is rather novel.

• The structure of the blackboard is characterised by being made of Nodes, elements
in the solution space. These have a user-defined, record-like structure.

• Lazy evaluation is supported.
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* Bags are supported as data structures, which parallelism enhancing.

Numerous operations are defined for these data abstractions, particularly a number of
generic operations which can be applied to lists, lazy lists and bags, which shield the user
from the underlying data structures used by the system or by other segments of his pro-
gram.

4.3.1. The Structure of the Solution Space

The most obvious data abstraction provided by Poligon is similar to that provided by con-
ventional blackboard systems, that is, the Node on the blackboard as an element in the so-
lution space. Such nodes are record-like internally. They have named fields, which can
often contain multiple values to be associated with that name. Poligon provides this but
also goes beyond it.

Conventional blackboard systems, such as AGE, tend to provide nodes on a blackboard
divided into groups, often called "Levels". "Levels" themselves are not represented.
Arbitrary use of global data, held in global variables, distinct from the blackboard is also
allowed.

Poligon has a much more regular representation for data. The nodes are represented as in-
stances of Classes. The Classes themselves are represented as Nodes, which "control"
their instances. Knowledge concerned with classes as a whole can be associated with these
nodes. Shared, global variables are not allowed in Poligon.

Poligon also provides;

Superclasses Classes that provide characteristics to the instances of
clas.:es. These can be thought of as templates for the in-
stances.

Metaclasses Classes that provide characteristics to the classes themselves.
These can be thought of as templates for the classes.

Thus the classes are themselves instances of metaclasses, which can be user defined, such
that instances of a given class can have any number of superclasses, i.e. component tem-
plates, and any number of metaclasses, i.e. component templates for their parent class. It
is possible to instantiate classes any number of times, as well as their instances.

Automatic property inheritance allows shared data to be located on locally central nodes,
which are immediately visible to the interested parties. This distributes shared data in such
a manner as will, hopefully, minimise hot-spotting.

An example class declaration, the specification of a template for a class of nodes, is shown
below. The declaration defines a class of nodes calledWords, each instance of which has
two fields (slots) called Letters and Sound.Class Words:

Fields :
Letters
Sound

Extensions to this sort of syntax allows the definition of superciasses and metaclasses
within class declarations. The following example defines the class Sheep. Each instance
of the class Sheep will have the characteristics defined for sheep and for mammals. The
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class calledSheep (an instance, in fact, of the class Meta-Sheep) has the characteristics of
types of animals.

Class Types-of-animals
Fields :

Rate-Of-Breeding

Class Mammals
Fields :

Colour-of-fur
Number-of-legs : 4

Class Sheep :
Metaclasses : Types-of-animals
Superclasses : Mammals
Fields :

Thickness-of-wool
Flock

4.3.2. Lazy Evaluation

Lazy Evaluation is supported in the guise of Lazy Lists, Lazy Function Arguments and in
the form of the lazy association of expressions with names. The following is an example
of the lazy association of a name with a value. The name A-Meaningful-Name is associated
with the value of the call to the function An-Expensive-Function1.

Definitions :
A-Meaningful-Name

An-Expensive-Function (an-arg, another-arg)

The value of an item defined in a Definitions construct is always a future if it is possible to
evaluate it as a future.

4.3.3. Bags

One abstraction suited particularly to the parallel mode of execution of Poligon programs is
the Bag data type. Bags are implemented in Poligon so that they are formed as the result of
efficient parallel operations and can be processed in parallel efficiently. Even when the
elements of Bags are processed serially they perform efficiently. The lack of a defined
ordering in the Bag means that the system can always return the first satisfied Future out of
a Bag of Futures, causing minimum waiting for values. Similarly, when a program at-
tempts to extract an element from a bag and there are no satisfied elements the process in
which this happens will go to sleep until the next available future is satisfied.

A Bag is generated, for instance, as the value of the following expression. It is a Bag,
which contains all of the Words, whose Sound is"phoo'2.

1Suitable Force operations are provided so that the time of evaluation can be controlled by the program if
necessary. These force operators allow the program to performEager Evaluation if it is needed.
2The expression "Element • Sound" denotes extracting one of the values associated with the "Sound" field
of the potential element in the bag. ""' is an operator that selects which of the values associated with the
field is to be delivered.
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Subset of Words For Which Element • Sound = "phoo"

4.4. Parallelising Abstractions

Poligon supports data representations which are designed to give the user a high level han-
dle on the exploitation of parallelism. Most values computed in Poligon are derived as
Futures. Computation is decoupled from the expressions which reference values. Futures
are, however, completely invisible to the user in Poligon. It understands which functions
are strict in their arguments and so waits for the satisfaction of a Future only when it is re-
quired. The programmer can, of course, declare his own non-strict functions and opera-
tors. All DeFuturing coercions are performed automatically by the Poligon system. Thus
the following expression will deliver a list with two elements, one of which is the value of
a and one of which is the sum of b and c. The first will be a future, if a is. The second
will be the DeFutured value b+c.

List(a, b+c)

The efficient use of the bandwidth of the processor interconnection network is enhanced by
the use of Broadcast and Multicast operations. Broadcast messages allow messages to be
sent to every node in the system in a single operation. Multicast messages allcw messages
to be sent to a collection of nodes in a single operation. The Poligon system uses these ex-
tensively in the processing of the Bag data type and in the execution of groups of actions in
parallel. It uses the same mechanisms to provide an efficient implementation for searching
a collection of nodes on the blackboard for patterns, which tends to cause significant
slowing of serial implementations because of the combinatorial nature of such searches. It
allows the blackboard to be searched for bags of matching nodes in a single, fast operation.
This provides a significant improvement over the serial construction of such collections.

4.5. Real-time processing

Real-time processing brings its own problems. Poligon provides a simple and regular
mechanism for defining the interface between the Poligon system and its signal data. This
data can be from an arbitrary number of different types of sources and is posted on the
blackboard asynchronously.

Poligon also provides a mechanism by which each datum is timestamped from the time that
it enters the system. These timestamps are propagated automatically by the system so that it
is trivial for the programmer to manipulate time-ordered collections of values. This mech-
anism is required because the conventional implicit time ordering of data in lists cannot ap-
ply here and the non-ordered nature of Bags is sometimes not sufficient.

4.6. The control of assignment

Assignment is something which is likely to cause significant problems in any parallel sys-
tem. Poligon constrains assignment in a number of ways. Side-effects are only permitted
on the fields of nodes. All side-effects can be monitored by rules that might be interested in
the changes to values. This removes the possibility of the knowledge base getting confused
because of surgical side-effects to data structures at arbitrary times and at arbitrary places in
the processor network. Assignment is also constrained so that all of the updates to the
fields of a given node are done atomically, before any rules which might be triggered by
these changes are allowed to trigger. Such atomicity helps to preserve the consistency of
the system.
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An example of a collection of updates to fields of a given node is given below. In this ex-
ample the node an-instance-of-words is having two of its fields updated; Sound and
Letters. Operators, such as "<-", allow different sorts of modifications to be made to
fields. Such operations might be "add this value to the values in this field" or "replace-all
of the values in the field". This avoids complex and potentially expensive expressions in
the old value of the field being evaluated non-locally.

Change Type : Update
Updated Node : an-instance-of-words
Updated Fields : Sound <- "phoo"

Letters (- ( f o o

5. Conclusions

This paper has described Poligon, a language and system for the investigation of problem
solving on distributed-memory, parallel hardware. The language was described in the
context of related work in the field and in terms of the abstraction mechanisms provided.
No significant description of the underlying run-time support has been given.

The Poligon system is still young. Only recently have applications been mounted on it in
earnest. Two distinct applications in the field of real-time signal processing are now being
implemented and more applications are likely to be started in the near future. Poligon has
proved to be well suited to these applications as far as they have gone. No results from the
simulation process regarding the performance of Poligon programs are yet available.
Significant protlems have been found in the simulation of the fine-grained parallelism re-
quired by the Poligon metaphor. Such simulations are very time consuming, prone to bugs
in the underlying system software and simulator, and are difficult to debug. It is for these
reasons that Poligon also has a serial version, Oligon, which accurately emulates the be-
haviour of the parallel system but without true parallelism. A simulated processor array of
256 processors has recently been made available to the users of Poligon. This simulation
will allow more satisfactory investigation of the properties of Poligon programs in the fu-
ture.

6. Further Reading

For a significantly more detailed treatment of the Poligon language and system the reader is
encouraged to consult [Rice86].

The following topics were not described or discussed but are relevant to the work described
above. The reader is encouraged to consult the following for further information;

[KSL 85] for a description of the Advanced Architectures Project of which Poligon is a
part.

[Delagi 86] for a description of CARE, the hardware simulator used by Poligon, and of the
particular hardware being simulated.

[Schoen 86] for a description of CAOS, the concurrent object oriented system running on
the CARE machine, which Poligon uses as its operating system.

[Ensor 85], [Lesser 83], [Aiello 86] and [Fennel 75] for other approaches to parallel prob-
lem solving using blackboard systems.
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1. Context for this document

1.1. Intended Reader

This document is aimed at the new user of the Poligon language and Poligon system. It is
assumed that the reader will be familiar with the operation of Texas Instruments ExplorerTM
lisp machines' and with Common Lisp itself. Familiarity with AGE would be useful in
understanding the nomenclature used in Poligon but it is by no means essential.

1.2. About this document

It is hoped that this document will be both helpful and meaningful to both the prospective
Poligon user, the experienced user, who is in need of a reference manual and to readers,
who have no intention of doing anything other than finding out about Poligon. These are
in many ways conflicting goals, since the detail necessary for a reference manual can often
be too great for the casual browser. An attempt has been made to structure this manual in
such a way as to allow the reader to skip over excessive detail. To assist both the novice
and experienced user the manual is equipped with a sizable index.

Within the text of this manual great use is made of italicized script. Italic text is used to de-
note three things; either significant words or phrases in the system, places where some
piece of text is being stressed or quoted sections of program examples or descriptions.
Thus if the reader was to find the following program example

If : a-value > another-value

then a-value would be referenced in italics because it is a reference to the example above.
The fact that this is an example of an If Part of a rule would also be italicized as it has been
here to show which terms have special significance or meaning.

The reader should find that all terms which are in bold script and all terms which are in
italic script, which refer to significant terms are indexed.

1.3. Definition of Terms

In this document the following terms will be held to have ,he associated meanings:

DeFuturing That coercion which extracts the value from a Future, wait-
ing for that value to be evaluated if necessary.

Evaluation in this document the term Evaluation will, in all cases, refer
to the process of executing the code needed to determine the
value of the relevant object. All code in the Poligon system
is compiled through the Common Lisp compiler. There is
no code, which is EVALed. It is conspicuously the case,
therefore, that free references will be determined on the basis
of their lexical, not on the basis their dynamic environment.
Thus Lazy Evaluation refers to the lazy execution of a call to
a closure in which resides the code associated with the de-

lExplorer is a trade mark of Texas Instruments Corporation.
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termination of a value, not the lazy calling of EVAL on a
quoted list. This makes the semantics of the Poligon system
much clearer.

Field This refers to a named data item within a Node. It is consid-
ered in all ways synonymous with the term Slot.

:Keyword This will denote a symbol which is interned in the keyword
package, that is to say a symbol, whose slashified denotation
is that of a symbol preceded by a colon.

Keyword This refers to a language Keyword in the Poligon [or L100]
language. A Keyword in these languages is much like a
Keyword in a language such as Pascal. "If' is an example.

Latest This word is used in the AGE sense, which is to say, it
refers to the first element in the Value list associated with the
Fields of a Node. Because of the nature of Poligon systems
it is by no means necessarily the case that this denotes the
most recent value with respect to the processing of the data
over time. If, however, the Field which is being examined
has a sorting key then this will indicate the most re-
cent/greatest element.

Model The user defined application, which runs within the Poligon
Blackboard framework. More specifically, this includes all
code written in the Poligon language and any external func-
tions which the user has chosen to write in Lisp but excludes
all that is provided by the Poligon system.

Modify This term is used in a very general sense, as opposed to the
specific AGE sense ($Modify), in which it meant adding a
new element to the front of the Value List. In Poligon this
could mean any user definable modification operation.

Node An element in the solution space and, more generally, any
object on the Poligon Blackboard. Nodes are the data
structures on which Rules operate.

Rule Rules are the program constructs in which the user encodes
procedural or declarative knowledge. The consist of condi-
tion/action pairs that are sensitive to the state of the evolving
solution and operate on that solution.

Slot This refers to a named data item within a Node. It is consid-
ered in all ways synonymous with the term Field.

Special This term is never used in the Common Lisp sense. There
are no dynamically bound variables in Poligon Models.
Special is simply used as an adjective, which denotes some-
thing of significance.

Value List This refers to something akin to the AGE concept of a his-
tory. It is a list of values associated with a Field in a Node.
In Poligon the structure of the value of a Field can be con-
siderably more complex than simply a list (see Section
3.3.4).
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2. Introduction

The Poligon system is an attempt at producing an application independent Blackboard
framework, which is able to exploit parallelism inherent in the application by being inher-
ently as independent of implicit sequential dependencies as possible and by executing the
suitably compiled user code on an, as yet simulated, array of processors.

The architecture of Poligon, at least from the user's point of view, is independent of the
nature of the target processors and their topology. It is very much the policy of the design
of Poligon that the interface provided to the user should be entirely decoupled from the tar-
get architecture and, wherever possible from the explicit expression of parallelism. This is
for the obvious software engineering reasons of wanting to produce reliable, maintainable,
debuggable and portable code, quickly. This, of course, puts much more reliance on the
underlying system to make a reasonable attempt at exploiting the parallelism inherent in the
system. It is assumed that this is the job of machines. Just as no sensible person would
voluntarily write in assembler, so the programmer should not be forced to write hard-coded
implementations of his ideas. It should be noted, however, that exceptions to this policy
do exist and are mentioned in Appendix P, the appendix, which concerns user defined
parallelism.

The Poligon system consists of two distinct components; the Poligon Compiler and the
Poligon Run-Time System. These components are linked only in that the compiled code
from the Poligon Compiler runs in the context of the Poligon Run-Time System, and that
both are loaded when Poligon is loaded.

Poligon has two modes of operation; a Serial mode and a Parallel mode. 1 Considerable ef-
fort has been made to make the semantics of these two modes as similar as is reasonably
possible. The Serial mode exists primarily as a development tool. It is vastly faster than
the simulated Parallel mode and it is therefore hoped that this will be a useful development
tool even if only because of its speed. Luckily, however, the Serial mode is also more in-
telligible, when it comes to debugging. Because of the similarity of these modes they will
not be referred to as distinct except for where there are material differences in either their
semantics, operation procedures or user interface.

The following sections of this introduction give a brief introduction to the Poligon architec-
ture. Section 3 of this document is a description of the Poligon language and the Compiler.
Section 4 is a description of the Poligon Run-Time System. Numerous appendices follow
these sections detailing different parts of the Poligon system.

2.1. The Poligon Architecture

Poligon takes as its starting point AGE. That is to say it is a system which implements the
concept of Nodes - record-like data structures - on a Blackboard and these Nodes are acted
on by rules, which are chunks of knowledge represented as condition-action pairs. From

1The terms Serial and Parallel here are somewhat misleading and exist for historical reasons only. The
Parallel mode in Parallel because it uses the CARE simulator to simulate parallelism. This is still
executed on a uniprocessor, so is really a serial system, but its semantics are such that they would have
been the same if the program were running on a real multiprocessor. The Serial mode is a mode in which
the CARE simulator is emulated. In practice, therefore, the scmantics are very similar to the Parallel mode.
The major difference is that the CARE system is more likely to be deterministic and a considerable amount
of instrumentation is provided to monitor the behavior of the system. The Serial mode has none of this
instrumentation but is vastly faster.

4-22



this point on it diverges from AGE. It should be noted, however, that there are two quite
distinct "Views" of the Poligon architecture. One is the View of the user of the system, the
other is the view inside the system. A number of features in the system have been designed
to be in some sense compatible with the likely target architecture, which is expected to be
an array of distributed memory MIMD (Multiple Instruction stream, Multiple Data stream)
processors, which are able to communicate with one another by message passing. It is as-
sumed that there is no global data, and hence there are no shared variables. It is also as-
sumed that there will be a large number of these processors, comparable to !he number of
active Nodes in the system, not of the order or tens. The architecture of Poligon by no
means requires these assumptions. It is simply in some senses "optimized" for such archi-
tectures.

Because of the uncertainty of the target machine and the low level nature of many of these
aspects the user has been to the greatest degree possible detached from them. The user per-
ceives a hierarchically structured Blackboard system whose rules are entirely daemon
driven. Global variables are not implemented and the sharing of data is achieved by asso-
ciating it with the level in the hierarchy of the Blackboard which is directly visible to all
those Nodes that might want to see -it.

What follows is a brief discussion of the architecture of Poligon from a lower level. This is
provided for the interest of the user who might want to know some of the motivations for
the features of Poligon. Reading it is by no means necessary in order to use Poligon,
though, sadly, it may be of use to allow efficient use of Poligon.

2.1.1. Inside Poligon

AGE, like most Blackboard, systems has the concept of a Blackboard, which is a globally
accessible database, and a distinct Knowledge Base, consisting of Knowledge Sources,
which are themselves divided into smaller chunks of knowledge; Rules.

Poligon takes as its underlying metaphor the concept of a Blackboard Node as a process.
In the most extreme view of this a Node would be a processor but this is by no means re-
quired if the processors in the network are capable of multi-tasking. This view of Nodes
has the effect that the Nodes, instead of being passive entities in the conventional
Blackboard metaphor, are active entities. From this point of view it requires no great leap
of the imagination to envisage the distribution of the rules of the system over the processor
network so that the Nodes have the rules necessary for them intimately associated with
them. At this point the concept of a distinct database and Knowledge Base disappears, at
least at the implementation level.

AGE uses a simple scheduling mechanism. A global stack/queue of event tokens was kept
and events were taken from the stack in order to activate Knowledge Sources, which might
cause more events to be posted on the event list. Control was therefore passed around
explicitly between the Knowledge Sources by the agency of this global list.

In Poligon there are no global variables. This means that a shared data structure, such as a
global event queue, is neither possible nor desirable, since shared data structures are likely
points for serialization. This restriction was made because an arbitrary processor might
have to communicate over an arbitrary distance across the processor network in order to see
such a global queue. This would cause hot spots in the gid and major consistency prob-
lems. In discarding this global control mechanism Poligon needed another way to cause
the activation of rules. Clearly all of the rules could attempt to fire all of the time. This
could cause the hardware to be very busy doing work waiting for rules to fire. This work,
since it might require non-local references, could well cause significant degradation of the
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performance of the system. Poligon, therefore, opts for a distributed event-based mecha-
nism for rule activation. Rules are associated with Fields of Nodes and "watch" them.
When a suitable event such as an update, happens to the Field being watched, the rules that
are doing the watching are triggered. The Node that owns this Field therefore becomes, in
a loose sense, the Poligon equivalent of AGE's focus-node.

Thus for each rule the triggering Field has to be specified. This allows the system to place
the rules for the specified classes of Node and the specified Field around the processor grid
in a manner appropriate to the application. This means that the AGE concept of the
Knowledge Source as the fundamental unit of scheduling no longer applies. Not only can
the rules of a Knowledge Source fire quite independently of one another but they may also
be distributed over quite distinct parts of the processor network. Thus the term Knowledge
Source should not be taken to represent quite the same sort of entity as it does in AGE. It
is merely a knowledge representation abstraction.

Poligon is aimed amongst other things at investigating real-time signal processing prob-
lems. This by no means precludes other applications, of course. It simpl; means that the
system has a real-time clock, some special mechanisms designed to cope with real-time
problems and requires all data coming into the system to be time-stamped. All input data
for the system is fed through a procedure, which is user defined and is expected to put the
data on the Blackboard in a suitable fashion. This data is spread around the network and
acted on automatically by a number of input processing Nodes. This all happens in a man-
ner about which the user need not worry.
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3. The Poligon Language, Its Syntax and Semantics

The Poligon language is the source language in which rules are written so that they will run
under the Poligon system. The language is intended to provide a common front end for the
user so that the rules developed for the system should work transparently between the
Serial and Parallel modes. This removes the need to have multiple sets of source code,
which need to be updated.

Apologies are made now for any forward references in this document. It is the nature of
language descriptions that in order to describe a language in a suitably structured and top-
down manner forward references must be made.

The Poligon Compiler and the Poligon Run-Time System can be loaded up by executing
the form:

(Make-System 'Poligon :Silent :Noconfirm :Nowarn)

The Poligon language is built on top of the L100 language, much as flavors are built up
from basic components. The Poligon language therefore can be thought of as an extension
to the behavior of the L100 language with a number of modifications. Of the modifications
the only ones that the user is likely to see are the addition of a few new types of basic
value. These are documented below in Section 3.3.3.

The language extensions themselves define four distinct parts of the user's input to the
Poligon system. These are;

" The Class Declarations
• The Data Input
" The User Defined Initialisation
• The Knowledge Base itself, which is encapsulated in Knowledge Sources and

rules.

These will be described in turn. The grammar is shown in Appendix J.

3.1. Poligon and L100

The Poligon language was defined by building it on top of the L100 language. In this sec-
tion, therefore, we will first describe the L100 language and then the extra features that
were built on top of it to give the Poligon language. The description will be done in this
order so as to give the reader a feel for the syntax of the language before any complications
to do with concurrent problem-solving are added. L100 is a simple language which com-
piles into Common Lisp. Its semantics are largely those of Common Lisp and so it exists
mainly to provide a syntactic infrastructure on which other languages can be built.

3.2. Introduction

,100 is a programming language. It is quite powerful in its own right but its major fea-
tures are its simplicity and its extensibility. The language is intended to achieve different
goals from those of Lisp. It is intended to be easy to read and, at least to some extent,
similar to many of the other languages that exist, which have infix Operators and
Keywords.

4-25



LlO0 itself is in fact an application written on top of a generic parser tool. LIO0 is that lan-
guage, which was written in order to express the code for the parser tool in a manner that
could be bootstrapped easily. Thus LIOO is just one of the possible uses of this parser tool
that reflects the aesthetic inclinations of its author. The generic parser tool is thoroughly
documented in its source code. It is a parser interpreter, as opposed to a parser generator.
It is a top-down parser with backtracking. It is, therefore, not constrained by restrictions
on the source grammar such as LL. It will match source code against a Grammar requir-
ing arbitrary backtracking, though if the compiler writer chooses to implement the seman-
tics of the compiler by the use of side effects then the backtracking might not generate the
correct code.

The remainder of this section comes in three main components. These cover; how to load
up the language, the language in outline including the concept of Operators in ,100, the
way in which L100 handles Lists and the implementation of the L100 Grammar. An ap-
pendix gives some examples of simple programs written in L100.

3.2.1. An Outline of L100

L100 is a block structured language with closed constructs. It is therefore different from
languages such as Pascal in as much as it has no Syntactic concept of Begin and End. This
is, of course, only of aesthetic significance. Constructs in the language are, by convention,
closed by keywords, which have the prefix of End. Thus If is closed by Endif and Let is
closed by EndLet.

L100 is case insensitive, like Common Lisp. L100 is, like Lisp and Pascal, layout inde-
pendent, though it does sometimes rely on whitespace for its lexis. These cases are de-
scribed below, but the corollary is that you can always put any number of Comments or
whitespace characters between tokens, but tokens may not have any whitespace within
them. Strings are a special case and are mentioned below.

"Statements" are separated by the Lozenge symbol (0) or bang symbol (!). This is in-

tended to be a noisy way of highlighting that side effects are being made.

3.2.2. L100 lexis rules

The .100 language has different lexis rules from Lisp. This is so as to allow special sym-
bols to have syntactic meaning. This means that the lexis rules are much like those of
Pascal-like languages. Identifiers can only begin with letters, & signs or dollars, Numbers
can only start with a numeral and so on. There are a couple of things that should be noted
however. Operators that start with an Operator delimiting character (see below) can only
contain characters that are reserved for Operators. The lexis rules are relaxed for
:Keywords (i.e. tokens that begin with a colon). Thus anything that follows a colon, up
until the next whitespace character or parenthesis will be read by the reader as a :Keyword.
The same can be said of quoted items. In both of these cases it is imperative that a whites-
pace character should be put between these symbols and commas in Parameter Lists,
otherwise the commas will be swallowed into the symbol and a syntax error will result.

There are a few :Keywords used by the lexical analyzer itself to denote types of tokens.
These are considered special by the lexical analyzer and must be quoted before they can be
read as tokens. It is unlikely that any user code will contain any of these. The:Keywords
are shown in-Table 3-1.
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:Startof file :Endof file :Bra
:Ket :Comma :Slash
:Lsq :Rsq :Colon

Table 3-1 LIO0 Reserved :Keywords

There are a set of characters that cannot be used in the middle of Identifiers, since they are
used as Operators, syntax delimiters or are reserved for the user to use as Operators. These
are shown in Table 3-2.

<+ * /
0 [ ] A

@ D <-- ? <_ %
T , 'a

Table 3-2 LIO0 Reserved Characters

Strings are conspicuously different in L100 from Lisp. Strings in Lisp suffer from the
problem that you cannot stretch the source code representation of a String over multiple
lines without embedding carriage control in the String, which in turn gets compiled into the
String. An unpleasant consequence of this is that Strings which are not closed properly can
cause large quantities of code to be swallowed. This is not the case in L100. No token is
allowed to cross a newline boundary. This means that a String that is not closed on a line
will cause a lexis error. If the user wants Strings that are longer that the amount of space
that he is prepared to allocate on a given line Strings can be continued by the use of the in-
fix literal String concatenation Operator '&". Thus an example String might be as follows:

"This is a very long "&
"string, which is spread "&
"out the way I want and "&
"split over a number of "&
"lines."

"It should be noted that the "&" Operator is executed at compile time, not at run time. Thus
it is able to provide constant documentation Strings but cannot be used as a general String-
Append Operator. There is, of course, nothing to stop the user from defining such an
Operator.

Comments are defined in two ways in L100. The first is the "end of line" type of Comment
supported by Common Lisp and introduced by a semicolon. The second is a bracketed
Comment construct, which allows Comments in the middle of code on a line. A bracketed
Comment may not stretch over a line boundary. This is to prevent code from being swal-
lowed in Comments. The bracketed Comment is denoted by the "{ }"; characters. Thus
the following is a legal piece of L100 code

a-length (the length of a) + 3 -*

new-length {new length) 0 ; Comment

3.2.3. The L100 predefined Operators

L100 comes equipped with a number of predefined Operators. These are defined as shown
in Table 3-3.

4-27



Operator Lisp Equivalent Precedence Associativity
< < 15 Left
> > 15 Left
_< <= 15 Left
_ >= 15 Left
+ + 20 Left

20 Left
* * 25 Left
/ Quotient 25 Left

Not equal 15 Left
D Cons 25 Left

Append 20 Left
Setf 2 Left

=_Equal 15 Left
* <Application> 30 Left
Or Or 5 Right
And And 10 Right

Table 3-3 LJO0 Language Operators

These have been chosen to give the sort of effect that one would expect in a language with

infix Operators.

NotEqual is defined as (Not (Equal x y)).

Since these Operators are not easily printable on standard printing devices without special
text processing an extra set of Operators has been defined which provides an easily print-
able representation of the source code at, perhaps, the cost of a little legibility on Lisp ma-
chines. These are shown with their equivalents in Table 3--4.

Operator I Easily Printable

D

•@

< <=

_> >=

Table 3-4 LJO0 Operators and their printable equivalents

It should be noted that the normal mode of use of operators in L100 is in the infix form.
This is, however, not mandatory. Operators can be used in a prefix form if required. If
this is done then the arguments provided are used as specified. No reordering is performed
as it might be in the case of the infix form. Thus both of the following expressions are le-
gal L100 and will have the obvious effect.

a (-- b (Append a b)
(->(a, b, c) (Append a b c)
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3.2.4. Defining New Operators

One of the features of significance in L100 is not simply the presence of infix Operators but
the ability of the user to defined his own and to modify the behavior of the existing
Operators. The predefined Operators are only provided as a convenience to the user and are
in no way a structural feature of the language. Defining Operators, therefore, is one of the
key mechanisms in L100 by which the language can be tailored to suit the application at
hand.

Operators are defined by the use of the DeclareOperator procedure. This procedure is de-
fined as follows:

DeclareOperator (Name, Function-to call, Precedence,
Associativity, Reverse thearguments,
Omittheoperator, Language)

The use of this procedure is fully documented in the source code. A couple of examples of
its use, however, are given here to show how easy it is:

DeclareOperator('--> 'setf , 2, :Left , t, nil, :L100)0

This is the L100 source code necessary to define the assignment Operator in L100. The
Operator is called ".--" and instances of this Operator are compiled into calls to the Setf pro-
cedure. The Operator has a precedence of 2 (this is very low) and it is left associative. The
operands are reversed in the generated code and the Operator is included, i.e. this is not a
function application Operator. Thus the following transformation happens at compile time

a --- b

compiles into

(Setf b a)

The second example is of the Ll00 infix function application Operator. This is declared
with the following code:

DeclareOperator('. , nil, 30, :Left , t, t, :L100)0

This Operator is called "o" and there is no Lisp function associated with it. It has a high
precedence of 30, is left associative, has its arguments reversed and has the (null) function
omitted in the generated code. Thus the following transformation occurs at compile time:

aob

compiles into

(b a)

Clearly, then, the following:

a*b --) c

compiles into
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(Setf c (b a))

and

c -) aob

compiles into

(Setf (b a) c)

3.2.5. L100 and lists

Lists in L100 are different from Lists in Lisp in that Lists are always treated as representa-
tions of data structures. They are not used to denote the language itself in any way. Thus
arguments to a function are not expressed as a List, though an argument may be a List.

Lists in L100 are enclosed in brackets and are implicitly "backquoted". Thus the Lisp list

'(a b c)

would be expressed as follows:

[a b c]

The Comma concept associated with backquoted Lists in Common Lisp can be expressed
in three ways in ,100. The direct equivalent of a Comma is the Uparrow. Thus the Lisp
expression:

(a b ,c d)

would be expressed as follows:

[a b Tc d]

The Comma At-sign construct is mirrored by the Downarrow. Thus the Lisp expression:

"(a b , @c d)

would be expressed as follows:

[a b Ic d)

There is a third way of expressing the positioning of evaluated elements in a List. This is
by the use of the Percent delimiters. Within a percented component of a List all of the ar-
guments are evaluated. This is a shorthand for a lot of Uparrows. Thus the Lisp expres-
sion:

" (a b ,c ,d ,e ,f ,g h i j)

can be expressed as follows

[a b % c, d, e, f, g % i j)

Of course a call to the function List can always be made as well.
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As is the case for Operators, the special symbols in the List notation can be substituted by a
more easily printable form. These are shown in Table 3-5.

Nor m al Easily Printable
T' A

Table 3-5 List specifier characters and their easily printed representa-
tions

3.2.6. Defining extensions to the grammar

Other than defining your own Operators, L100 provides the user with the ability to define
his own extensions to the Grammar. It is by such mechanisms that one produces special-
izations of L100 to produce languages such as the Poligon and Cage languages.

The Grammar can be extended by two mechanisms. It can be extended statically by the use
of the Converter procedure, which takes a List of filenames and a :Keyword denoting the
name of the language and converts the Grammar into a form that the compiler can under-
stand.

It can also be extended incrementally by the use of the procedure Declare Production,
which takes three arguments; a String denoting the production line in the-Grammar, a
String denoting the action line in the Grammar and a :Keyword denoting the name of the
language.

The definition of new Grammar constructs (productions) on the fly is a dangerous and dif-
ficult process so the user is advised to read all of the documentation associated with the
parser tool and the Grammar Converter before he tries.

3.2.7. L100 and Binding

L100, like Common Lisp, is a lexically scoped language. L100, however, is much more
strict about Binding than Common Lisp. In L100 it is not possible to achieve Dynamic
Binding unless it is explicitly asked for. Lambda Binding is not allowed at all. Thus the
following L100 and Common Lisp programs are not equivalent.

Variable a-global-variable <- 42

Define a-function (a-global-variable)
a-global-variable •another-function

EndDefine

Define another-function (an-argument)
print (a-global-variable) 0
print (an-argument)

EndDefine

Do i00oa-function

and

(DefConst a-global-variable 42)

(defun a-function (a-global-variable)
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(another-function a-global-variable)

(defun another-function (an-argument)
(print a-global-variable)
(print an-argument)

(a-function 100)

In the first case the L100 program will print out 42 and then 100. In the Common Lisp
case the program will print out 100 and then 100. Similarly the following programs are not
equivalent.

Variable a-global-variable 4-42
Define a-function (an-argument)

Let a-global-variable an-argument
In an-argument another-function

EndLet
EndDefine

Define another-function (an-argument)
print(a-global-variable)0
print(an-argument)

EndDefine

Do 100.a-function

and

(DefConst a-global-variable 42)

(defun a-function (in-argument)
(let ((a-global-variable an-argument))

(another-function an-argument)

(defun another-function (an-argument)
(print a-global-variable)
(print an-argument)

(a-function 100)

The same results are produced by these programs as were produced by the preceding ex-
amples. Thus the L100 Let construct achieves only Lexical Definition and not Dynamic
Binding. This is also the case with function arguments; Lambda Binding.

There is, however a need for Dynamic Binding, since the underlying Common Lisp system
requires it for such global symbols as Terminal-IO. L100, therefore provides a Bind
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primitive to achieve this. The following LOO program is equivalent to thelast Common

Lisp example. 1

Variable a-global-variable (-42

Define a-function (an-argument)
Bind a-global-variable = an-argument

In an-argument .another-function
EndBind

EndDefine

Define another-function (an-argument)
print (a-global-variable) 0
print (an-argument)

EndDefine

Do 100.a-function

3.2.8. L100, Type Checking and Pragmata

L100 supports no static type checking. It does, however, support the specification of dy-
namic type checking. This is done in the Parameter Lists for functions. The types that an
argument can take on are defined after the argument. A set of types can be specified. Thus
a function could be defined as follows:

Define a-function
(an-argument,
an-integer-or-a-string : Integer : String,
another-argument)

EndDefine

This function takes three arguments. The first and third arguments can be of any type. The
second is allowed to be either an integer or a string. Failure to conform to either of these
types will cause an error at run-time. The types that can be specified are any symbolic types
that can be given to typep. Note these are Identifiers delimited by Colons, not :Keywords.
The specification of the : Integer type is the same as saying that the argument should con-
form to the specification of (typep an-integer-or-a-string 'Integer).

L1O also supports a mechanism which allows Pragmata to be defined to act upon function
arguments. There is only one such Pragma in ,100, called Lazy, but languages derived
from LOO might well define more for themselves. All such Pragmata are defined using the
same syntax as that for type checking. The Lazy Pragma defines arguments to be lazily
evaluated. There is a strict declare-before-use requirement for functions with Lazy argu-
ments. The following is an example of code in which Lazy arguments to functions are
used.

Define a-function (a : lazy, b)
Princ ("Hello" )
if b then a endif

lNote: The Poligon model of parallelism does not allow dynamic binding. If the user chooses to use
dynamic binding then this will will not be strictly in accordance with the programming model i.e. a true
Poligon machine might not support such a program.
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EndDefine

Define another-function (c,, d)
Princ (d) 0
a-function(Princ(" there. "), c)

EndDefine

Do another-function (t, "Example 1: ")

Do another-function (nil, "Example 2: ")

In this example the function a-function is defined to have a lazy argument, called a. If the
argument b is non-nil then a will be evaluated. If not then a will not be evaluated. Thus the
output from this program will be "Example 1: Hello there. Example 2: Hello".

3.2.9. The Outer-most Level of the Language

An L100 program consists of a number of outer most level declarations. Most of the
Grammar and complexity of the language is associated with the definition of expressions,
which can be put within these outermost level declarations. The outer most level declara-
tions do, however deserve a little comment. They are defined by the produc-
tion:Toplevelstatement and can consist of a number of items.

3.2.9.1. Constant and Variable declarations

Constants are declared by the following form:

Constant a-constant-name M an-expression

This is equivalent to a DefConstant declaration. The expression is evaluated at load time.

Variables are declared as follows:'

Variable a-variable-name +- an-expression

This is equivalent to a DefParameter declaration. The expression, like that for Constants is
evaluated at load time. The initialization is mandatory.

3.2.9.2. Structure Declarations

Structure types can be defined in L100. The following is an example of such a declaration.

Structure structure-name
Fields field_1, field_2, field_3

This declares a Structure called structure name, which has three fields, which are accessed
by the functionsfield_1,field_2 andfieTd 3. A type predicate is declared, whose name
will be is a structure name and a keywordless constructor will be generated called
Make-structure-name. -The prefices "IS_A_" and "MAKE_" are defined as the values of

1Note: Global Variables are not allowed in a Poligon application, since there is no global data concept.
The ability to define global variables has not been removed from the Poligon language, however, because it
is still useful to define globals that denote things that are not related directly to the functioning of the model
itself, e.g. trace files and such which would not exist in a real system.
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the constants MakePrefix and Is-aPrefix. Redefining these will allow the user to change

this behavior if desired.

3.2.9.3. Function and Procedure declarations

These are of the obvious form and are covered in Appendix B. No distinction is made
between functions and procedures in L100.

3.2.9.4. Outermost level statements

There is a need, sometimes, to express outermost command level side-effects. These are
often assignments to system global variables, which are made at load time. This can be
done by the use of the Do construct. The statement

Do 42 - System-Variable

will assign 42 to System-Variable at load time.

3.2.9.5. Compile time statements

L100 has provision for the user redefinition and/or extension of the compiler. There is a
need, therefore, to allow the user to make these redefinitions at compile time, otherwise
they would be done too late. The Execute construct is used for this purpose.

Execute DeclareOperator
('an-op , 'a-function , 2, :Left, t, nil)

This will cause the Operator An-Op to be defined, so that the compiler knows about it, at
compile time.

A peep-hole is allowed down into Lisp at this point, in case there is an extreme need to ex-

press something that is not supported in L100. This is the function Literal.

Literal takes a String argument and reads and evals from it. Thus the statement

Execute "<<Some strange and horrible bit of lisp>>".Literal

will cause that bit of Lisp to be evaluated at compile time.

3.3. General Linguistic matters

This section relates to a number of issues that are significant concerning the Poligon lan-
guage, either because they refer to changes to L100, features which are unique to the
Poligon language or for which an understanding is necessary before the ensuing descrip-
tion of the language can be fully appreciated.

3.3.1. Packages

The Poligon system code is resident mainly in the Poligon Package. This package exports
a number of symbols, which are used by the Poligon-User package. It is generally as-
sumed that any Poligon model will be written in the Poligon-User package or a package
which is built on it.
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3.3.2. Data Types

There are three data types that might be of interest to Poligon model writers. These are
Bags, Sets and Lazy lists. Bags are documented fully in Section 3.3.3.4, the section con-
cerning searching the Blackboard. Sets are just like bags only they cannot contain any
duplicate elements. They are not be described as such but will be described in terms of
their differences from Bags in Appendix E. Sets and Bags share the same operations.
Lazy Lists are lists, which can be used by non-strict functions. They act just like lists but
their Tails are defined in terms of value generating functions, not Cons cells. If the func-
tion Tail is called with a Lazy List as its argument it gradually evaluates the elements, which
are needed. The list preserves EQness, though this should not be of significance unless the
user chooses to ignore the advice given in Section 3.3.2.3, the section concerning equality.
The functions for manipulating Lazy Lists are described in Appendix E, the appendix on
data structures, as are those for Bags.

There are three data types which should not be visible to the Poligon model writer but
which have an effect on the system. These are Remote Addresses and Futures and Multi-
Futures.

3.3.2.1. Remote Addresses

This data type is an internal implementation detail of the CARE architecture. All Nodes in
the system are seen as Remote Addresses in the processor net. This behavior is emulated
in the Serial mode so that any time the user prints out, for instance, a Blackboard Node it
will be printed out in the following form:

#<Remote xxx>

where xxx is the name of the Node. This may be ignored by the user, since the implemen-
tation hides any need for the user to deal with this data type. However if the user attempts
to write any user functions that poke inside the Poligon implementation then he will find
them all over the place. It cannot be stressed too strongly that the user should not resort to
this practice. If you really need to do something that is not provided by the system then
maybe other people may need it too and so it should be made part of the system and inte-
grated properly. A major purpose of the Compiler and Run-Time System structure of the
Poligon system is to protect the user from changes to the internal representation of the sys-
tem.

An important feature of the fact that Poligon Nodes are seen by their Remote Addresses is
that type comparison functions cannot be used on them usefully. For instance, the Strict-
Type-Of #<Remote Sheep-42> would not be 'Sheep, it would be 'Remote-Address, inde-
pendent of the type of the Node pointed to by the Remote Address.

3.3.2.2. Futures and Multi-Futures

Futures, and their close cousins Multi-Futures are values which represent promises for val-
ues. They are used extensively by the Poligon implementation. They are used because they
allow the system, in principle, to carry on doing something else whilst a value is being
evaluated by a different process. A process will always suspend itself if it needs the value
of a Future, which has not been satisfied.

All values, which are extracted from the Fields of remote Nodes are rtpresented as Futures.
Thus most values that you are likely to want to represent or manipulate in Poligon are rep-
resented as or contain Futures.
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Futures can be seen in the Poligon system when they are printed out because they will be

represented as:

#<Future xxx>

where xxx is either the value that the Future represents or "Unsatisfied", an indication that
the Future has not yet been satisfied.

The proliferation of Futures in Poligon might, at first sight seem to be likely to cause prob-
lems. For instance the following expression might seem to be an error at first sight:

#<Future 42> + #<Future 127>

where #<Future xxx> denotes an expression whose value is a Future. Even though the
values of the Futures are acceptable arguments to the "+" operator the Futures themselves
are not. To cope with this problem the Poligon system emulates a machine which has
Futures as a properly implemented low level data type and all such operations will be co-
erced so as to wait for the values of the Futures. It might be thought, therefore, that this
might not buy the user anything, since all Futures immediately cause the system to wait for
them. Luckily this is not the case. The Poligon system will only wait if the operation
which is being applied to the Futures is strict on its arguments. Thus functions such as List
and Cons will, happily, create structures such as:

List(#<Future 42>, #<Future 127>)

i.e. a list which has two elements both of which are Futures. This means that the Poligon
system will only wait for any value if it is logically necessary. A number of pre-defined
functions are defined to be non-strict in some of their arguments. Some of these are given
in Appendix E, the appendix conceming data structures.

The cases in which operations are likely to be non-strict are those in which data structures
are being created, functions which simply pass their arguments on to other functions or
those in which assignments are happening. Clearly the user must be able to define his own
functions that are non-strict in their arguments. Poligon provides a mechanism for this.

All Structure declarations made in the Poligon language have a constructor function de-
clared for them which is not strict in its arguments. This constructor function has proper
:Keyword arguments, all of which are defined to be non-strict. Thus the following code

Structure astructure Fields field_1, field_2

will declare a Structure type called a structure with fieldsfield 1 andfield 2. A construc-
tor function will be declare called Make_a_Structure. It will have the following parameter
spec:

(&Key Field_1 Field_2)

These will be known to the system as being non-strict arguments. This is no use if the user
should want to declare his own constructor type functions or such like. For instance if the
user wanted to define My_Cons, a function which conses backwards then the following
definition would not be sufficient

Define My_Cons (thehead, the tail)
Documentation "Conses backwards"
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Cons (thetail, thehead)
EndDefine

This is because, even though Poligon knows that Cons is not strict in its arguments and so
no DeFuturing coercion is necessary for the arguments that are passed to Cons, calls to the
function My-Cons will still DeFuture their arguments. The way to prevent this is to pro-
vide decoration for the arguments to the function. This would be done as follows:

Define My_Cons
(thehead : Non-Strict, the-tail : NonStrict)

Documentation "Conses backwards"
Cons (thetail, thehead)

EndDefine

Arguments are declared to be Non-Strict in exactly the same way as they have types de-
clared for them. Any subsequent calls to MyCons will have the desired behavior.

3.3.2.3. Equality

It should be noted that the presence of Futures and the Multiple-Values data type in Poligon
somewhat changes the possible meaning of equality. Thus EQUAL might well return false
even though its arguments represent the same objects. To this end Poligon has its own
version of equality and inequality. At the Poligon source code level they are represented by
the operators "=" and "*" (and "%=").1 These operators are the only safe way to check
for equality in Poligon. They apply the minimum amount of DeFuturing necessary.

There are cases when the user might want to have his own definition for equality. Poligon
permits this for Structure instances. There are a number of reasons for this:

" A user defined equality predicate for structures might be much more efficient than
the system defined test (EqualP).

" The user might have circular structures, which would normally cause stack over-
flow during equality testing.

" The user might wish to define a criterion for equality which is less strict than equal-
ity, for instance coordinates, which are close enough together, might be said to be
equal.

" The user might have debugging information in his structures, which are not really
part of the simulation. These, presumably, should not be tested for equality.

To do this the user should define a message handler, which supports the :Equal message.
For an example of this please see the Section 3.3.2.6.

As an optimization the user can define a property called :Equality-Tester on the symbol that
names the structure type. If this has as its value a function then this is used as the equality
testing predicate. If it is the keyword :No, then this is an optimized way of saying that
there is no special predicate provided.

3.3.2.4. The Size of Structures

It is necessary for the CARE simulator to measure the size of all of the messages that it
sends. This includes user defined data structures. Because these can contain elements,

Ilf the user chooses to write user functions in Lisp then he should use the functions Are-The-Same and
Not-equal, into which these operators map.
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which should not be visible to the simulation, such as debug fields, it is necessary for the
user to be able to define his own size measuring mechanism for his structures. This is
done by implementing a handler for the :Total-Word-Size message. An example of this is
shown in Section 3.3.2.6. If there are any fields within the structure, whose size is not
constant, or which is not known then this can be determined by calling the function Total-
Word-Size.

3.3.2.5. The Copying of structures

When the CARE simulator sends a message it copies all of the data in that message.
Because user defined structures may have fields, which are not intended to be seen by the
simulation, such as debugging fields, it is necessary to be able to define a means of copy-
ing user defined structures. This is done by defining a message handler for the :Copy-Self
message. Within this handler it is the user's responsibility to create a new instance of the
structure and copy all of the fields, which are to be copied. An example of such an handler
is shown in Section 3.3.2.6. In order to copy the fields, which are to be copied, the user
should use the function Copy-Object.

3.3.2.6. An Example Message Handler

The following is an example message handler, showing examples of all of the messages
mentioned in preceding sections.

* Coords are said to be equal if they satisfy the is-near predicate.
" The number of words occupied by a Coord is 1 + the size of the x and y compo-

nents.
" When a Coord is copied a new one is created but the two instances share the same

debugging field.

Coords are printed so that they look like #<Coord: 42, 200>. The x and y fields will be
mouse sensitive and they will be printed in a slashified form if the instance in question is
being printed in a slashified manner.

Structure coord Fields x, y, debug-field

Define coords-are-the-same (a, b)
is-of-type(b, 'coord) and is-near(a, b)

EndDefine

Define Message-Handler-For-Structure
(message-name, struct, &Rest, args)

Case message-name Of
Choice :Equal :

coords-are-the-same (struct, argsehead)
Choice :Total-Word-Size :

1 + ;;; The name of the structure
struct x.Total-Word-Size + struct.y•Total-Word-Size
;;; Note, not the debug field.

Choice :Copy-Self :
Make coord(:x, structex.Copy-Object,

:y, structoy.Copy-Object,
:debug-field, struct'debug-field)
;;; Note the debug field is shared.

Choice :Print-Self
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format (args-head, "#<Coord: -a, -a>",
structx, args.the-third,
structoy, args*tbe-third)

Choice :Which-Operations :
[:Which-Operations :Equal :Total-Word-Size
:Copy-Self :Print-Self]

Otherwise :
ferror(nil, "-S is an illegal operation for

a coord.",
message-name)

EndCase
EndDefine
Do Putprop ( 'coord, 'Message-Handler-For-Structure,

'named-structure-invoke)

Do Putprop('coord, 'coords-are-the-same, :Equality-Tester)

3.3.2.7. System functions

Along with the change in the meaning of equality a number of frequently used functions
become inadequate. For instance, Assoc will no longer work in the general case, because
not only might the elements in the list or the keys be Futures but the list itself might be a
Lazy list. Thus the user should use the Poligon function Associate and other Poligon
supplied Collection manipulating functions. In particular, the user should Not use any
functions which process lists internally or which make some sort of test for equality, such
as Member or Subst. The user should use only those functions specified in Appendix E
and should write any others himself.

There is a function provided which will do any necessary DeFuturing. This is the only
mechanism provided for the user who wants to write his own user functions in Lisp.
Although the Poligon system can make sure these functions are not passed any Futures as
arguments it is quite likely that these arguments will contain Futures if they have structure.
They may be lists of Futures, for instance. In this case the user will have to do his own
DeFuturing and accept the risks associated with not writing his code in the Poligon lan-
guage. The DeFuturing coercion is done by a function called "T". Thus (T something) is
guaranteed to have a value which is neither a Future nor a Multiple-Values object.

3.3.3. Values

There have been three significant extensions to the language to support new ways of ex-
pressing values in expression. These are the mechanisms for creating new Nodes, the
mechanism for searching the Blackboard and Multiple Values. There are also values asso-
ciated with some special identifiers within the user's model.

3.3.3.1. Identifiers and Special Value Denotations

There is only one predeclared identifier in the system. This is, the symbol Poligon-
Blackboard, whose value is an Instance of the class Root.

After th- declaration of a class the name of that class becomes a.'ailable to represent the
class node of that class. Similarly the name META-<name>, where <name> is the name of
the class, becomes available to represent the Metaclass node of the class node.
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There is one special value in Poligon. This is the value called Empty. It denotes an empty
Value List. It cannot be used in an expression but it can be used instead of an expression
wherever the value of a Field is defined. It can therefore be used in a default value specifi-
cation in a Class Declaration, as the right hand side of a Field assignment or as the value of
a Field definition in the Field Initialisation component of a Node Instance Creation expres-
sion.

3.3.3.2. Multiple Values

Poligon has its own representation of Multiple Values. This allows it to manipulate multi-
ple values within the CARE simulator and still to be able to deal with system defined func-
tions, which return multiple values.

A Multiple Values object is created by the function Multiple-Values(&Rest values). These
values can be decomposed by the following means:

* System defined functions (see Appendix N)
" The MultipleLet construct, which works for both Poligon Multiple Values and

Common Lisp multiple values.
* Definitions (see Section 3.9.1)

It should be noted that wherever in this manual a function is specified as returning Values
or Multiple Values these are Poligon Multiple Values, not Common Lisp ones.

3.3.3.3. The Creation of Nodes

This construct replaces the Add change type in AGE and allows a Node of an arbitrary type
to be created and to have its Fields initialized. This can, therefore, be thought of much like
a Cons or a structure creation operation. The value of such an expression is a new Instance
of the class of node being created. The construct is introduced by the keywords New
Instance of. An example of its use can be found in Section 3.6, the section relating to sig-
nal data input.

The New Instance of construct takes as its first argument the class of Node to be created.
There are two options for this argument, one which is generalized and one, which is opti-
mized. If the argument has as its value a Class Node then the Class Node will be used to
control the creation of the node. If, however, a large number of instances are being created
- this is particularly significant for the input of raw signal data - then an optimized version
is available. This requires that the user specify the name of the class to be created, as op-
posed to the Class Node, which is to do the creation (e.g. 'Sheep as opposed to Sheep).
This is faster but has some restrictions. This will not be optimized if the initialization for
the new Node includes any references to any Fields in the Class Node. What is more,
there is now no longer a guarantee that the Class Node, which owns this Node, will be
made aware of its existence before the Node starts active processing. Another restriction is
that the new Node will not be taken from the Class Node's resource of Recycled Nodes.
Thus any user defined resource management will not be of any use.

The creation of Nodes is a significant problem in parallel systems because multiple, asyn-
chronous requests to create the same node might appear. These might result in the system
having, for instance, a number of Nodes that represent what is in fact the same object. It is
possible that, had the user's model known about the existence of such an object already it
might not have created the new node for it. Poligon provides modifiers to the New Instance
of construct, which allow the user to perform creations that are regulated and atomic with
respect to the Class Node doing the creation.
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The New Instance of construct allows four optional components, introduced by language
keywords.

Unless This takes as its argument an expression, which is evaluated
on the Class Node doing the creation just before the creation
would happen. If this expression evaluates to nil then the
node in question is created, otherwise the value of the ex-
pression is returned by tIe New Instance Of construct.

Updated Class Fields This takes as its argument a collection of field up-
dates. These updates are executed on the Class Node after
the node has been created. It is not executed if the Unless
part has a value other than nil. This component allows the
user to cache information on the Class Node concerning
which nodes are under its control. For instance, such a
cache might contain a mapping table between the numbers
painted on the sides of sheep and the nodes that represent
them. Within these field updates the new node may be ref-
ered to by the name The-Created-Node.

Subsystem Of If the Subsystem Of option is not supplied then the new
.Node will have the class node, which created it, as its only
Supersystem. If the Subsystem Of component is supplied
then the values given will be used instead of the class node.
Thus if you would like the class Node to be one of the
Supersystems then you must specify it in this component as
well as the others.

Initialisation If the Initialisation component is supplied then the values of
the Fields specified are set. This can, if required, override
the Default values.

The New Instance Of construct returns two values. The first is either the new node that was
created or the value ofthe Unless component if it was non-nil. The second is a flag, which
is t if a new node was created and nil if no new node was created.

Some examples of the use of the New Instance of construct are shown below. For these
examples it is assumed that the class Sheep confers upon its instances fields called Colour
and Number. Similarly it is assumed that the class Sheep has a Metaclass, which confers
on it the field Sheep-Number-Map.

New Instance of Sheep
Subsystem Of : a-flock, my-animals
Initialisation : Colour (- "Black"

This first example causes a new Sheep to be created, which is part of a-flock and of my-
animals and which is black. It should be noted that the use of the name Sheep in this ex-
ample is an expression, whose value is a Node of the type class, i.e. it is any Class Node.
The value supplied here does not have to be a constant "Name" of a class Node, though
some optimization can result from this being a constant.

In the second example, below, a sheep is created only if there is no element in the Sheep-
Number-Map field's latest value, which matches with the number of the new sheep. If
there is no match then the node is created and the Sheep-Number-Map is updated so that the
new node has been cached there. It is assumed that the name Number-of-the-new-sheep
represents the number painted on the side of the sheep.

4-42



New Instance of Sheep
Unless : Associate (Number-of-the-new-sheep,

Sheep$Sheep-Number-Map)
Updated Class Fields :

Sheep-Number-Map +- List (Number-of-the-new-sheep,
The-Created-Node)

Subsystem Of : a-flock, my-animals
Initialisation : Colour - "Black"

Number (- Number-of-the-new-sheep

3.3.3.4. Searching the Blackboard

Poligon supports a mechanism by which the Nodes of the Blackboard can be searched.
This mechanism introduces with it another basic data type in the Poligon system other than
the Node. This is the Bag. Bags are described in detail below. It should be noted here
that there is a data type similar to Bag, called Set. Sets are very similar to Bags except that
they contain no duplicate elements. None of the operations mentioned in this section have
Sets as their values but these data types are freely inter-convertible.

One of the problems in Poligon-like systems is the need to find all of the Nodes that satisfy
a particular condition and then do something with them. The finding of these Nodes is it-
self a combinatorial problem and so Poligon attempts to provide a high level interface to the
parallel mechanisms in the underlying machine, which should allow these searches to be
done more efficiently.

There are two methods of achieving these matches; one of which is very general and one of
which is optimized both in the linguistic sense and also in the run-time sense in order to
achieve simple and frequently made sorts of searches. An example of the more specialized
case is as follows

Definitions
A-Bag -Subset of Sheep For Which Element • Id #nil.

In this case a Definition is being made that specifies that A-Bag will represent the Subset of
the members of the class Sheep for which the 'o" component of the Id Field is not nil. That
is to say for which the Latest value of The-Sheep's Idfield nil. In this construct the user
must provide a collection of things to look at, which can be a class or a Collection of
Nodes. He must also provide a Field Selection Operator, which causes the operation to
apply to the relevant part of the Field value and an operator and value, which will be ap-
plied to the value extracted from the Field. The operator would normally be a boolean op-
erator but need not be. All elements in the collection represented by, in this case, the ex-
pression Sheep, which delivered a non-nil result from the test specified will be included in
the resulting Bag. The position occupied by the Identifier Sheep may be any expression.
If that expression has the value of a Node then the Subset created is of the Subsystems of
that Node. If the value of the expression is a Collection then the Subset created will be the
Subset of the Nodes represented by the Collection. If the expression represents a list of
Link Cells then the collection used for the Subset operation will be the Nodes at the other
end of the Links.

The above construct returns a Bag, each element of which has three values:

" The node which satisfied the predicate supplied.
" The value of the predicate, for instance, in the case of the example above, the value

of the expression Element • Id - nil.
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* The value extracted from the field using the operator supplied. In the example

above this would be the-Latest value of the Id field.

An example of the more generalized form of this value generator is as follows:

-Definitions
Another-Bag -Subset of Sheep Which Satisfies

(a-sheep)
a-sheep.Id = The-Black-Sheep*Id

EndX

In this case Another-Bag is the Subset of all of the Subsystems of the Sheep, which satisfy
the condition that the Sheep's Latest Id is the same as the Latest Sheep-Id of The-Black-
Sheep. The-Black-Sheep is a free reference in the predicate and a closure will thus be
formed. Another form of this is allowed for the convenience of the user, which allows the
negation of the predicate's value, so that the code below and that above are equivalent.

Definitions :
Another-Bag a Subset of Sheep Which Fails

X(a-sheep)
a-sheep.Id - The-Black-Sheep.Id

End%

The above two constructs return Bags, each element of which has three values.

• The node which satisfied the predicate supplied.
" The value of the predicate, for instance in the case of the example above, the value

of the call to the X-expression.
" The a second value returned by the X-expression if it returns one.

The primary value of a Subset construct is a data structure called a Bag. A Bag can be
thought of as a set except that duplicate elements are allowed. Bags have a structure which
is not of importance to the user but they have a number of operations that define their be-
havior. Bags are intended to allow the exploitation of concurrency by the use of Futures.
Thus, elements in the Bag may not have been determined by the time that the model wants
to manipulate them. There axe said to be two sorts of elements; Determined elements and
Undetermined elements. The system will always try to.return a Determined element as the
value of an access function.

Undetermined elements can be of two classes, those that will eventually result in a useful
object and those that are Ghost responses, from those elements in a class that did not match
a Subset operation. There are no Determined Ghost Elements.

The fact that Undetermined elements can be Ghost Elements need not be a problem. Bags
can still be supplied as arguments to Subset operations and In Parallel For Each constructs.
The major problem with this is that there are a number of possible meanings to the concept
of Number-Of-Elments. Thus there are a number of functions which deliver different in-
terpretations of this idea. It is conspicuous that calls to Current-Number-Of-Elements may
well return different values over time.

Other than for the discarding of Ghost Elements, Bags can be thought of as user-immutable
constant data structures. The functions, which manipulate Bags are specified in Appendix
E, the appendix relating to data structures.
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3.3.4. The Structure of Nodes and their Fields

The Poligon blackboard is made up of a number of Nodes. This section describes the
structure of these Nodes.

Nodes are, in many ways, like Pascal records. They are data structures, which have fields
that the user can access. They have, however, more structure than this. To start with, the
fields in the record are of two main types; user defined and system defined. These Fields
are similar other than that the System Defined ones can only be read by the user, since they
contain important system data. These are specified in Section 3.4.3, the section relating to
System Field Names.

The Fields of a Node have structure, which is not normally visible to the user but can be in
certain circumstances. In AGE each Field could contain a list of elements, which denoted
the history of values associated with that Field. This is implemented in Poligon by the
value in each Field being a list of values. If the user is only interested in one value then he
need use only the first element of this list. The behavior of the history list in AGE was well
defined, since every element was always implicitly time ordered. This cannot be the case in
Poligon, since events can happen asynchronously and can disrupt the order of the list due
to computational delays. Poligon provides a rich set of mechanisms for defining much
more complex behavior for Fields

3.3.4.1. The Basic Behavior of Fields

Poligon provides a basic type of field. This has a Value List, but nothing more. The user
can then specify three operations on a per-Field basis to specialize the Field's behavior.
These are mentioned below and an example is given in Section 3.4.2.1.

Insertlf Decides whether a new element should be inserted, when an
attempt is made to insert an element. An example of this
might be "Only insert the element if it is not Nil".

Removelf Decides whether an element should be removed, when a re-
moval operation is attempted. An example of this might be
"Remove this element as long as its removal won't leave the
Field Empty".

ModifyWith Determines which elements should be should be added to the
existing elements and which should be removed, given a list
of new elements and the existing elements. This is a
generalized mechanism, which is provided for when the two
mechanisms mentioned above are insufficient. This function
must return two values. The first should be a list of the
elements to add to the values in the Field, the second should
be a list of the elements to remove.

These operations are implemented as functions, which takes three. The first argument
should be the element to add/remove or the list of elements to be addcd as appropriate. The
second element is the existing value list and the third is the node itself, so that other fields
can be read if necessary. Thus the user could provide the function Is-Not-Nil - as fol-
lows:

Define Is-Not-Nil (something, values, node)
Ignore (values, node) 0
something # nil

EndDefine
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3.3.4.2. The Sorting Behavior of Fields

Extra functionality can be mixed in with that mentioned above. It is possible to make
Fields keep their elements sorted. This means that the element returned by the "" operator
would be the one which had the highest value of some (user defined) attribute. It would
also mean that the "e" operator would return the value list in the required order.

The user can enable this behavior by providing either, or both of the following specifier
functions.

SortedBy This function must be a predicate of two arguments. Its de-
fault value is ">".

KeyedBy This function, given an element in the value list must be able
to extract the value, which is to be passed to the sorting
predicate. Its default value is the identity function.

An example is given in Section 3.4.2.1.

3.3.4.3. The Dictionary Behavior of Fields

This mechanism allows Fields to act also like a dictionary. This mechanism is enabled by
providing the following:

In dexedBy A function of one argument, which takes an element which
is to be put into the Field and computes the index for the
field in the dictionary.

An example is given in Section 3.4.2.1.

The user is allowed to index on values, which can legally be tested for EQL-ness within the
CARE system, namely symbols, numbers and Remote Addresses. If the system knows
that the indexing function returns an integer and it knows the range of that integer then it
can make a much more efficient implementation (using an array instead of a hash table). To
do this the user should tell the system about the result type of the function. Thus, for in-
stance, if the indexing function is to be My-Indexer and its result range will always be from
5 to 10 then the following will allow the system to optimize this.

Do proclaim ([function My-Indexer [t] [integer 5 10]])

To gain access to this dictionary mechanism the user uses a modified version of the "." op-
erator. If, for instance, the Position Field of a Sheep is encoded as a list whose elements
are (x, y, time), then its IndexedBy function would be The-Third. An example of seeing
where a sheep is at a given time might be as follows.

a-sheep.Position At a-given-time

The value of this expression is a Multiple-Values object, containing all of the elements in
the Field, if any, which can be found at a-given-time.

3.4. Class Declarations, the Shape of the Blackboard

The Blackboard in Poligon is structured in quite a complex manner. This complexity has
been kept from the user to the greatest extent possible such that simple applications should
only need simple facilities but more complex applications may require of the user a more
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sophisticated conceptual model for the shape of the Blackboard. To cope with these differ-
ing requirements this section has two subsections. The first will describe the Blackboard in
AGE-like terms and will give simple examples to show how the Class Declarations for a
simple Model might be implemented. The second section will give a more detailed treat-
ment, describing all of the facilities available.

3.4.1. An AGE-like model for the Poligon blackboard

AGE itself has a simple model for its Blackboard. The Blackboard consists of Nodes of
different types. These Nodes are used to represent the different elements in the solution
space of the model. The different types of Node are said to belong to Levels. The name
Level is simply used to denote the conceptual level of abstraction to which the Nodes be-
long and the type of those Nodes. The Blackboard is imagined as being split horizontally
into these levels of abstraction. The rules in the system then act on the Nodes on the
Blackboard.

In Poligon the equivalent of the Levels of AGE are called Classes. This name is intended
to indicate that the Blackboard can be split vertically into different types of Nodes at the
same level of abstraction. A class can be thought of very much like an AGE level. A class
declaration is a template for the Instances of that class, showing the structure of a Node of
that class. An example might be as follows

Class Definitions For Model "My Farm-Yard Model"
Class Sheep :

Fields : Number-of-legs : 4
Weight
Colour

The collection of class declarations in a model are introduced by the keywords Class
Definitions For Model. In this case only one class is being defined for the model called
"My Farm-Yard Model". Thus all of the Nodes being dealt with on the Blackboard defined
above are of the type Sheep. An Instance of Sheep will have three attributes - Fields or
Slots. These Fields are used to denote the colour, weight and number of legs of each sheep
Instance. In this case the declaration is specifying that the initial weight and colour of each
new sheep Instance is undefined but that all sheep have, by default, four legs. This value
can be changed if the model should discover that any given sheep Instance has a different
number of legs.

There is now a slight difference here from AGE. In AGE the member Instances of a Level
were kept in a list, which was not part of the Blackboard. In Poligon, however Classes are
represented as first-class citizens. For more information on the full implications of this
statement you should refer to Section 3.4.2. This means that, in fact, the class itself is rep-
resented as a node. This node has the same name as the name of the class. Thus the sym-
bol Sheep in this example denotes the node, which is "in charge of' the Instances of the
class Sheep. This node has Fields just as the Instances iave. By default it has only the
system defined set of Fields (see Section 3.4.3 on System Field Names) but it can also
have user defined Fields.

The fact that the class of Sheep in the system is represented as a Node is only important
once the model starts to want to manipulate all of the sheep together. For example the ex-
pression

SheepeInstances
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Has as its value a list, which contains all of the Instances of the class sheep.

3.4.2. A Detailed Description of the Class Structure

To have a full understanding of the Class structure of Poligon it will first be necessary to
understand the following definitions.

Superclass/Subclass This is used in its conventional object-oriented sense.
All objects, which is to say Nodes, in Poligon, are members
of Classes. This class is much like a "type" ,in languages
such as Pascal in as much as it defines both the shape of the
data structure and the operations that may be performed on
it.
Classes can be specialized. This means that if one defines a
class of Farmyard-Animals such that all animals in a farm-
yard are of this type a specialization of this type might be
Sheep. In this case Sheep would be said to be a Subclass of
Farmyard-Animals and, by symmetry, Farmyard-Animals is
said to be the Superclass of Sheep. In practice any class of
objects can have any number of Superclasses. Sheep might
have Edible-Animals as a Superclass as well as Farmyard-
Animals. This means that Instances of the class Sheep
would have the characteristics, i.e. the Fields, of both
Edible-Animals and Farmyard-Animals as well as any that
might be particular to Sheep.

Abstract Superclass An Abstract Superclass is a class which has no direct
Instances. It is used only as a Superclass of other Classes.

Instance/Instance-Of An Instance of a class is a data structure, which has
the shape defined in a template, called the class. For exam-
ple, a Node, which we shall call "John's Sheep", might be
an Instance of the class Sheep. This means that it is a Node
in the Poligon system, which has all of the Fields defined for
Sheep. "John's Sheep" is said to be an Instance-of the class
Sheep and the class Sheep is said to have the Node "John's
Sheep" as one of its Instances. This should not be mistaken
for the Superclass/Subclass relationship. The Instance-Of
relationship can be thought of as an "Is a kind of' relation-
ship, whereas the Superclass relationship can be thought of
as "Is a subtype of'.

Supersystem/Subsystern The Superclass/Subclass and InstancelInstance-Of
relationships do not express anything about "Part/Whole"
relationships. For example "John's Sheep" may be an
Instance of the class Sheep but it is not Part of the class
Sheep. The class is something, which merely describes the
shape of Sheep as a whole. It would be reasonable, how-
ever, to want to express the fact that "John's Sheep", is part
of a particular Flock. This is done with the
Supersystem/Subsystem relationship in Poligon. Thus the
fact that "John's Sheep" is subservient to "John's Flock" is
expressed by the statement that "John's Sheep" is a
Subsystem of "John's Flock" or that "John's Sheep" has
"John's Flock" as one of its Supersystems.

Metaclass Classes are first-class citizens in Poligon. They are repre-
sented, like everything else, as Nodes. These Nodes them-
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selves are able to act just like any other Nodes in the system
and so must be Instances of Classes themselves. The class
of which any given class Node is an Instance is called, by
convention, the Metaclass of that class. It is by means of
Metaclasses that characteristics that are paticular to the class
itself, as opposed to the Instances of that class, are defined.

In Poligon it is possible to declare a very general class hierarchy. Any class can have any
number of Superclasses or Metaclasses. Similarly any Instance can have any number of
Supersystems. The following is a list of the axioms of the class structure.

• All Nodes are Instances of a class.
" Classes are represented as Nodes.
• Class Nodes are Instances of their own Metaclasses.
• An Instance can only be an Instance of one class.
• The Metaclass of which a class Node is an Instance is created by the system and has

as its Superclasses all of the Metaclasses that the user defined for the original class.
* Only one Instance of a class Node is created initially. That Node can be referred to

by the name of the class within a Poligon model.
* The Node representing the Metaclass of a class called <name> can be referred to in

a Poligon model by the name META-<name>.
• Any number of Instances of any class can be created, including Metaclasses.
" Metaclasses are Instances of the class Metaclass.

Some examples will now be shown to help to explain the implications of the above. A
simple example has already been shown in the preceding section, showing how to define
the class Sheep. Here, examples will be given to show how it is possible to define the
class Sheep in terms of Farmyard-Animals and Edible-Animals.

Class Definitions For Model "My Farm-Yard Model"
Class Farmyard-Animals

Fields : Weight
Colour

Class Mammals :
Fields : Number-of-legs : 4

Class Edible-Animals :
Fields Price-per-pound

Suitable-wines
Class Sheep

Superclasses : Farmyard-Animals, Edible-Animals,
Mammals

Fields Thickness-of-wool

Here, Sheep are shown to be types of Farmyard-Animals, Mammals and Edible-Animals.
Because they are edible they inherit the Field which will be used to hold the price-per-
pound that they would fetch at the butcher and some wines that might be suitable to accom-
pany their consumption. All farmyard mammals have four legs by default. Poultry, of
course, would have only two. Sheep, because they are wooly, farmyard mammals have
the attribute Thickness-of-wool, which is peculiar to sheep.

The node refered to by the name Sheep belongs to the class Meta-Sheep. Whenever a class
is defined by the model the system also defines a Metaclass called META-<name>, where
<name> is the name of the class which has just been defined. This Node can be thought of
as the producer of the node Sheep. The Metaclass to which it belongs can have user de-
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fined attributes. This is done by specifying Metaclasses for the class. For example, if the
class Sheep is also to have the characteristics of Animal-Producers then one might do the
following.

Class Definitions For Model "My Farm-Yard Model"
Class Farmyard-Animals

Fields : Weight
Colour

Class Mammals :
Fields : Number-of-legs : 4

Class Edible-Animals :
Fields : Price-per-pound

Suitable-wines
Class Animal-Producers :

Fields : Rate-of-production
Class Sheep

Metaclasses : Animal-Producers
Superclasses : Farmyard-Animals, Edible-Animals,

Mammals
Fields : Thickness-of-wool

In this case any Instance of the class Meta-Sheep will have as its Superclass the class
Animal-Producers i.e. it is an Animal-Producer as well as just a Meta-Sheep. Any number
of distinct Instances of this class can be made. This could be done either because the dif-
ferent Instances might have distinct characteristics or because a lot of Instances of the class
they represent are to be made and in a Parallel environment it might be more efficient to
have a number of class Nodes servicing the requests to create Nodes.

3.4.2.1. Field Behavior Modifiers

The field behavior modifiers mentioned in Section 3.3.4 are defined in the following man-
ner in the class declarations.

Class Flock
Fields

Size 0
;;; A Field containing the number of sheep
;;; in the flock

InsertIf : 'Is-Not-Nil
RemoveIf : 'Is-Not-Nil

Position : Empty
;;; Contains the position of the flock as
;;; a list (x, y, time)

ModifyWith : 'Position-Modifier
SortedBy : 1>
KeyedBy : 'The-Third
IndexedBy : 'The-Third

Here two Fields are defined, one has Insertlf and Removeif specifiers and is a simple
Field, the second has a modifier and is a sorted Field with dictionary behavior.
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3.4.2.2. The Subsystem Structure of the Blackboard

As has been mentioned above, the Blackboard is structured in terms of Instances of
Classes. There is another structure to the Blackboard, which is expressed as a function of
Subsystems/Supersystems relationships. The Blackboard has at the top of the Subsystems
hierarchy an Instance of the class Root. It is this Node which controls the Blackboard
during its Initialisation. All of the class and Metaclass Nodes are Subsystems of this Node,
which has the globally visible name Poligon-Blackboard. This should not be mistaken for
the Node Root, which is the class of which the top Node of the Blackboard is an Instance.

The class Root can be user defined. If the user elects not to defined any shape for it then it
will be defined suitably by the system but if the user wants to add Fields to the Poligon-
Blackboard Node then he need simply declare a class called Root. The system will process
this definition correctly so that it will take on the behavior defined by the system as well as
that defined by the user.

3.4.2.3. The Fields within Nodes

The names of the Fields within a Node are represented by identifiers. These Fields can
have default initial values associated with them. The definition of a Default value is ex-
pressed in the following manner.

field-name : <initexpression>

The <initexpression> must be either:

" A comma separated list of expressions that makes no reference to any Nodes or
their Fields, in which case it will be used to define the initial values for the Value
List of the Field.

" The identifier Empty. In this case the Field is initialized with an empty Value List.

The Initialisation of Fields is completely optional. Any attempt to read an uninitialized
Field will, of course, result in an error.

3.4.3. System Defined Field Names
Each Node, irrespective of its class possesses a number of fields that are used by the sys-
tem. Some of these are user accessible and some are not. For obvious reasons only those
that can be seen by the user are mentioned here. These fields are read-only. An error will
be flagged at compile-time if an attempt is made to update one of these fields.

Clock The Clock Field always has the current time in it in units de-
fined by the user's input data. This Field is updated each
time the clock ticks. This means that rules associated with is
will be triggered by time changes.

Subsystems The value of Subsystems is a list of the Nodes for which the
Node in question is a Supersystem.

Number-of-subsystems The Latest value of Number-of-subsystems is an
integer denoting the length of the list of Subsystems.

Supersystems The value of the Supersystems Field are always the Nodes,
which have the Node in question as one of their
Subsystems. This, in some way, denotes that the
Supersystems are in some way in control of the Node in
question or that the Node is a "Part Of' its Supersystem. A
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class Node will always have the Poligon-Blackboard Node
as a member of the value of its Supersystems Field.

Number-of-supersystems The Latest value of .Number-of-supersys-
tems is an integer denoting the length of the list of
Supersystems.

Instance-Of The Latest value of this Field is always the class Node of
which the Node in question is an Instance.

Name The Latest value of this Field is always a string denoting the
name of the Node.

The following Fields are defined only on Nodes, which represent Classes.

Instances The values of this Field are the Instances of that particular
class Node. It should be noted that this does not necessarily
represent a list of all of the Nodes of the shape denoted by
the Class Declaration for that class, since there may be any
number of Instances of that type of class Node (Metaclass).

Number-of-instances The Latest value of this Field is an integer denoting
the length of the list of Instances.

3.4.4. The Printed Representation of Nodes

All Nodes, by default, are printed simply with their names and with "#<>"s if they are
printed in a slashified fashion. The user may define the printing behavior of instances of a
class, so as to display the values in significant fields. This is done by an extension to the
Class Declaration. An example of this is shown below.

Class Definitions For Model "My Farm-Yard Model"
Class Sheep :

Fields : Number-of-legs : 4
Weight
Colour

Display As : The-Node.Name,
The-Node .Number-of-legs

A list of things to be printed out may be provided. Any references to the node in question
should be made through the special identifier The-Node. These items are printed out, by
default, using the "Y" format directive.Thus an instance of the class defined above might be
printed out as "#<Sheep-42 4>". If more sophisticated format control is required the user
may provide a format string as the first element in the list of items. If this is done the for-
mat string will be used instead of the default format directive. An example of this is shown
below.

Class Definitions For Model "My Farm-Yard Model"
Class Sheep :

Fields : Number-of-legs : 4
Weight
Colour

Display As : "-A has -A legs", The-Node*Name,
The-Node .Number-of-legs

This will result in Sheep-42 being printed out as #<Sheep-42 has 4 legs>.
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It should be noted that in writing this printing behavior it is often useful to use the Coerce-
To-Object or Identity functions so as to remove any references to Multiple Values of
Futures that might confuse the printed representation.

3.4.5. The Input Handler Class

Input is handled by Instances of an Input Handler Class. The Input Handler Class is a user
defined class like any other and it can act like any other but, when the system initializes, the
user designates a class which is to be responsible for the handling of input. All of the input
handling is automatic from then on. Input is channelled through the Input Handler Class
Node, which farms it out to its Instances, which it has created to handle the input. It cre-
ates as many as it needs in order to be able to deal with the input as it comes in. Instances
of the Input Handler Class are the only ones that are created by the system without the in-
tervention of the user's model other than the Class Nodes and the Poligon-Blackboard
Node. For this reason it may be of use to the user to define the Input Handler Class to be a
distinct class from any of the other Classes associated with the user's model, though this is
by no means mandatory. An example definition of an Input Handler Class is shown be-
low.

Class Input-Handler
Metaclasses Input-Handler-Class-Mixin
Superclasses Input-Handler-Mixin

This class has no user defined Fields. There need be no more code defined by the user than
this in order to specify the handling of input except if he should choose to call the class
something other than Input-Handler. For more information regarding this point please see
Section 3.7, the section which specifies the requirements for User Defined Initialisation. In
order for an Input-Handler class declaration to be valid it must specify the Superclasses and
Metaclasses shown in the example above.

One reason for attaching rules to the Input Handler Class Node or to the Input Handler
Nodes might be to propagate caches to the Input Handlers, which the Input Handlers could
use to initialize the instances that they create. This could save the original source of the
cache from becoming a hot-spot.

3.5. Node Field Selection

The $Value construct provided in AGE does not exists in Poligon. Access to a Field is
made simply by applying the name of the Field to the Instance. Thus "an-instance-a-field"
will deliver the Latest value in that Field.

3.5.1. System Defined Field Selection Operators

A new infix function application operator (Field Selection Operator) has been defined. This
is called ® and acts just like the • operator in all cases other than the application of the name
of a Field. Thus a-list&First will deliver the Head of a-list. In the case of the function be-
ing a Field name the code generated will have the effect on the Fields' Value List shown in
Table 3-6.

Operator I Effect
• Extracts the Latest value.

(D Extracts All of the values.

Table 3-6 Poligon Language Field Selection Operators
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Clearly • and E are somewhat equivalent to the Latest and All option in AGE's $Value re-
spectively and the operations that they denote will be refered to by these names.

It should be noted that these Field Selection Operators are special. They do not act like
function application, being simply an abstraction mechanism. Thus it is not the case that
using prefix function application notation will achieve any of these effects.

As is always the case in Poligon the Field Selection Operators have synonyms, which are
easy to print out on printers that do not support Sail characters. These are shown in Table
3-7.

Normal Easily Printed
0@

Table 3-7 Poligon Language Field Selection Operators and their easily
printed representations

3.5.2. System Defined Field Selection Predicates

A number of operators have been implemented using the field selection operator mechanism
but which it is not anticipated that the user will use as normal postfix function application
operators, though they would work as such. These are a set of predicates used to test cer-
tain characteristics of the values of fields.

Is-Empty This predicate returns T if the value field being examined is
Empty otherwise Nil is returned. If the field is uninitialized
then an error will be reported.

Is-Not-Empty This predicate returns Nil if the field being examined is
Empty otherwise T is returned. If the field is uninitialized
then an error will be reported.

Is-Undefined This predicate returns T if the field in question has not been
initialized, otherwise it returns Nil.

Is-Not-Undefined This predicate returns Nil if the field in question has not been
initialized, otherwise it returns T.

Is-Empty-or-Undefined This predicate returns T if the field in question has
not been initialized or it has the value Empty, otherwise it
returns Nil.

Is-Not-Empty-or-Undefined This predicate returns Nil if the field in ques-
tion has not been initialized or it has the value Empty,
otherwise it returns T.

3.5.3. User Defined Field Selection Operators

In order to support the change to the semantics of postfix function application operators an
extension to the L100 base has been provided in order to allow the user to define his own
operators of this kind. If the user wanted to define an operator, called 13, which would ex-
tract the second time ordered element, as opposed to the most recent or all of the elements,
then it would be done as follows:

Declare-Field-Selection-Operator('f3 , :Second, :Poligon)0

Where the above is the L100 code to perform this process, 'p3 is the name of the operator,
:Second is a :Keyword denoting the name of a method, which is defined below and
:Poligon denotes the name of the language in which this operator is to be defined. The

4-54



above procedure call must be made before the Compiler sees any instance of the use of the
operator. This can be forced using the Execute construct.

Poligon:
(Define-method (basic-slot :Second)

(&Optional (index nil))
"Returns the second element from the value list."

(if index
(ferror nil

"This sort of slot does not understand
indexing."

)
nil

(if (equal Values :Undefined)
(ferror nil

"Cannot find an element in the ~
uninitialized slot -A."
(send self :Name)

)
(if (or (not Values) (not (rest Values)))

(ferror nil "Cannot find an element in
the empty slot -A."

(send self :Name)

(Second Values)

Such methods must be defined for the flavor Basic-Slot and must take one argument,
which is the index used by the dictionary behavior. Any non-nil value for this argument
should cause an error. It is generally not necessary to have to resort to declaring such op-
erators.

3.5.4. Reading more than one Field at a Time

Because of the fine grain of critical sections in Poligon there may be problems in getting
consistent values from remote nodes over time. Thus a Poligon program which has an ex-
pression, such as:

a-function (a-node.a-field, a-node .a-field)

cannot guarantee that the values passed to a-function will be the same, since two distinct
reads will be made and a-node might have been updated between these two read operations.
This immediate problem can be solved by the caching of the value of a-node.a-field by the
use of a Definition. However if a-function needed the values from a number of fields of a-
node then clearly the caching solution cannot work. For this reason Poligon provides a
mechanism for reading the values of any number of fields atomically, so that a consistent
set of values can be derived.

a-node & .field-l & .field-2
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The above expression will return Multiple Values of the Latest values of thefield-I and
field-2 fields. For more information on Multiple Values please see Section 3.3.3.2 and
Appendix N.

3.6. Data Input

The Data Input component of the model is that part of the Poligon system that receives sig-
nal data. All signal data goes through this process, though the process itself could be in-
stantiated any number of times in a Parallel environment. The process handles all input in-
visibly to the user. The Poligon system, however cannot know how to put the data, which
has been read, onto the Blackboard and to this end it calls a pair of user defined routines to
do the work for it. The first of these is called Time-Of-Input-Record. It takes a single ar-
gument; the record read in from the input. It must be able to extract the timestamp from the
signal record and return it to the system. The system will then do all of the relevant opera-
tions to scale this time relative to the system's real-time clock and compensate for any slip-
page caused by stopping the system for debugging sessions. An example of this function
follows

Define Time-of-Input-Record (Record)
Record-Head

EndDefine

In this case the signal record is a list and the timestamp held in the first element of that list.

The second user-defined component of the Data Input component is a procedure called
Input-Procedure, which knows how to turn the signal record, which has been read, into a
suitable representation on the Blackboard. The procedure is passed the signal record, the
timestamp of that signal record and the Input Handler Node, which is controlling the input,
as arguments. This procedure is expected to be able to decode the signal record so that it
can determine what sort of signal record has been passed to it and then put the data onto the
Blackboard. This is done by creating a Node of a suitable class and initializing its Fields.
The Input Handler node argument is supplied so as to support system dependant initializa-
tion of the new nodes, for instance with information about the caches being kept on Class
Nodes. An example of this procedure follows

Define Input-Procedure
(Record, Timestamp, The-Input-Handler)

Ignore (The-Input-Handler) 0
Case Record.The-Second Of
Choice :Sheep :

New Instance of Sheep
Initialisation :

Serial-Number - Record.The-Third
Colour *- Record*The-Fourth
Position +- list (Record.The-Fifth,

Record.The-Sixth,
Timestamp)

Otherwise : Ferror(nil, "Illegal input record type.")
EndCase

EndDefine

In this case, the signal record is represented again as a list. The second element of the list
is a record type selector, which if it is a Sheep causes the system to create a new Instance of
a Sheep Node with the relevant Fields initialized. If the record is not for a Sheep then the
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system flags an error. This procedure must be written in the Poligon language, since Lisp
procedures do not have access to the Instance creating constructs.

It should be noted that, by default, the Initialisation of these values will cause events on all
of the initialized fields. This may not be desired and so the optional pragma NoEvent can
be used selectively to disable the automatic event generating mechanism. Thus:

Time <- NoEvent Record-Head

Would not cause an event on the Time Field.

There is no constraint as to when these routines are defined in the source file, other than
that they must be after the Class Declaratons (see Section 3.4) and they must be loaded by
the time the system is run. The rest of the model should never use them. 1

3.7. User Defined Initialisation

Most of the Initialisation for the Poligon system is done automatically. There is, however a
need to provide a hook for user defined Initialisation code. The user must specify an
Initialisation code body, which can, of course, be null.

Initialisation :
Debug-Format ("-&The system is starting up")0
do-my-initialization ()

In this case the user has used the mandatory Poligon language Initialisation construct to de-
fine a code body, which prints out a message and calls a procedure whilst the system is ini-
tializing itself.

The system will only start up properly if the user has declared an Input Handler Class
called Input-Handler, since the system will assume that the name of the class of input han-
dlers is Input-Handler. If you decide to call it something else you will have to specify this
change in the Initialisation code body by the use of the following form. For more informa-
tion on the Input Handler Class please see Section 3.4.5.

Set-Input-Handler-Class ('My-Input--Handler)

In this case the user has called the class of Input Handlers "My-Input-Handler". For more
information regarding the Input Handler Class please see the documentation associated with
class declarations.

When the system starts it tries to get the name of an input file. It does this by looking for a
function called Get-Input-File-Name, which takes a single argument, which is the name of
the system specified in the Class Definitions. If this function is defined then it is called,
otherwise the user is prompted for a file name.

Get-Input-File-Name can be defined by the user and it is expected to deliver either a string
or pathname denoting the file to be used for signal data, or nil in which case the run is
aborted. An example definition of this function is given below. It prompts the user with a
menu with the names of two test files and keeps doing so until the user selects one of the
options.

1Note. It may well be useful to the user to timebtamp his data when it enters the system with the time of
the input record.
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(Defun Poligon-User:Get-Input-File-Name (system-name,)

(if (equalp system-name "My System")
(w :menu-choose

'(("First"
:value "My-System:My-System;First. Input"
:documentation "The First Test"

("Second"
:value "My-System:My-System;Second. Input"
:documentation "The Second Test"

:Label " Which Test ? "

nil

After this has been selected, the system starts up.

3.8. User Defined Abort Function

There is no termination condition in the Poligon system, as there is in AGE. This is be-
cause the system will continue indefinitely, unless it terminates because of a lack of any
more simulation events. There is, however, a hook provided by the system so that user
defined code can be executed when the system is aborted (terminates itself). The system
can be aborted even after it has terminated of its own accord. This hook allows the user to
clean up after the model has stopped. This could be used particularly for the closing of
trace files, and such like, that the user has opened during the simulation. All that the user
need do is define a function called User-Abort-Function, which should be a function of no
arguments.

3.9. User Defined Knowledge

The definition of knowledge is done in Knowledge Source constructs. A Knowledge
Source is really only a way of parcelling up rules. The Knowledge Source itself has no ef-
fect on the behavior of the system but is intended to give the user a higher level handle on
his rules. A Knowledge Source, consists of two main parts; a Definitions Part and a col-
lection of Rules. Before the structure of Knowledge Sources is considered in any detail
mention should be made here of Poligon's Definitions mechan:ism.

3.9.1. Definitions, Lazy and Eager and Forced Evaluation

In AGE the rule writer tended to make "Bindings" within the condition part of a rule, which
were carried through into the right hand side. There was no way of specifying a binding
without the code that defined its value being executed. For a value that was expensive to
calculate this was most wasteful if the rule did not fire, since the value might not have been
used. This caused the rule writer to hack the problem so that the definition was made by
side effects in the middle of conditions, and such like, in the action parts of rules. This is
obscure and hacky. The Poligon system does not allow this sort of conduct, but provides
the rule writer with a more powerful construct instead. This is the lazily evaluating
Definitions mechanism. At a number of points in the model the user is allowed to make
Definitions. These Definitions associate values with names. The values can be derived by
any expression. Thus
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Definitions
a-name --3 + 4

associates the name "a-name" with the code that, when executed, will deliver the value of
the expression 3 + 4. Wherever a Definitions Part is legal, any number of Definitions can
be made. It is important. to note that this is not a binding in the conventional sense. It is
not possible to assign to a-name later in the code of a rule. What is more, the code associ-
ated with the calculation 3 + 4 is only executed when the value of a-name is first needed. 'If
it is never needed in the course of the execution of the rule then this code will not be exe-
cuted. Any further references to a-name will get the value derived by the first evaluation
without it being recomputed. Thus the user gets the best of both worlds; he get the clarity
associated with defining names to have immutable values and he gets the optimization as-
sociated with doing work only if it is absolutely necessary.

A further example might be as follows

Definitions :
field-a, field-b

a-node & .node-field-l & .node-field-2

In this case the namesfield-a andfield-b name the values in the fields node-field-1 and
node-field-2 in the node a-node. Putting more than one name to the left of the equivalence
sign causes a Multiple Values object to be unparcelled to give up its values. This allows
Definitions to denote the values of fields, which are read atomically in the manner shown
above. It should be noted, however, that in the following expression the name a-name
does not denote the value of the node-field-i field, it denotes the Multiple Values object,
which contains the values of both of these fields.

Definitions :
a-name -a-node & .node-field-i & .node-field-2

The strategy of not evaluating expressions unless they are needed is referred to as Lazy
Evaluation.

Lazy Evaluation in the Poligon system is provided in three forms; there are Definitions,
Lazy Function Arguments and Lazy lists. Lazy Lists are user definable lazily evaluated list
structures. These are defined fully in the appendices.

In a parallel, real-time environment, in which side effects are, sadly, being made all over
the place asynchronously, there can be problems associated with the meaning of lazily
evaluated quantities, which would not exist in a purely functional, non-real-time environ-
ment. Even in functionally programmed systems with full Lazy Evaluation it is usually
considered necessary to provide a Force operator, which, when met by the system, causes
its argument to be evaluated fully. This can be of quite some significance in functional
programming engines, be they real or virtual, since large amounts of space can be con-
sumed by holding on to lots of partially reduced Lambda expressions, which represent val-
ues that may eventually be needed but which are not needed yet.

In a purely functional environment the presence of operators, such as Force, have no effect
upon the semantics of the program. They are added as decoration to functional programs
simply as tuning features. Poligon provides two facilities akin to a force operator. These
are the Eager and the Force operations. It should be noted, however, that the use of these
facilities can have an effect on the semantics of a program.
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The reason for the use of the Force facility is to ensure that a particular definition represents
the value that you want at the Time that you want it, since the value represented by that ex-
pression might change over time and the unevaluated components of an expression can be
passed around indefinitely by the use of the Expectation mechanism.

Eager Evaluation is that method of evaluation, which causes evaluation of a quantity to be
started before the value is needed. This can happen even if the value is never accessed at
all. As is the case in any system, which supports eager evaluation, this opens the door to
doing a lot of unnecessary work. What is worse, there is one form of side effect which is
allowed in Definitions. This is the creation of new Nodes on the Blackboard. Eager eval-
uation can be induced by the Eager construct, which will not wait for the results of the ea-
gerly evaluated Definitions or the Force operation, which will wait until all referenced ex-
pressions are completely satisfied.

It should be noted that the use of the Eager or Force constructs on a definition, which refers
to a Node creation expression could result in the generation of unwanted Nodes if the code
that refers to the definition is never passed.

The Forcing or Eager evaluation of Definitions is only allowed in a few places in the
Poligon language. Unlike a fully lazy language, there are a limited number of things which
can be Forced meaningfully. These are the definition items. The user is allowed to per-
form Force or Eager operations in the places where the semantics of such a Force or Eager
are well defined. Since there is an implicit serialization associated with the execution of a
Force or Eager operation Forcing or Eager evaluation is allowed only in those places where
such a serialization might be meaningful. Thus a Force or Eager construct can occur im-
mediately before the When Part of a rule is tested, immediately before the If Part of a rule is
tested, immediately after the Action Part, Otherwise Part or Timeout Part of a rule is entered
and immediately after the body of an In Parallel For Each component is entered. Any de-
fined item may be Forced or Eagerly evaluated, but only after it has been defined. Thus,
within the body of an In Parallel For Each construct Definitions made at the head of the In
Parallel For Each can be Forced or Eagerly evaluated, as can those made in the Action Part
of the rule, in the Rule Header and at the Knowledge Source level.

An example of a Forcing, in the Action Part of a rule might be as follows

Action Part :
Definitions

Four-2 4 2
Eager : a-definition
Force : Four, another-definition

In this case, when the Action Part of this rule is entered, the Definition for a-definition will
start to be evaluated but the execution of the Action Part will not wait for its result to be re-
turned. Four and another-definition will then be Forced, that is, evaluated and execution
will wait until they are fully satisfied. It is assumed that another-definition and a-definition
have been defined either at the rule level or at the Knowledge Source level, above.

3.9.2. The Definition Part of a Knowledge Source

The definition part of a Knowledge Source is not quite like the definition part of any other
construct in the Poligon language. This is because the Knowledge Sources themselves are
compile-time rather than run-time entities. The Definitions that are made at the Knowledge
Source level are visible within all of the rules in the Knowledge Source but they are, like
the Definitions in rules themselves, evaluated in the context of the rule's execution and not
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in the context of the Knowledge Source. Thus the rule writer need not fear that the evalua-
tion of a definition within one rule will be visible and already evaluated within another rule.
For instance if the following Knowledge Source level definition were to be made:

Definitions :
a-value a <a> + <b>

where <a> and <b> are expressions, a reference to a-value within one rule invocation in
that Knowledge Source might not get the same value as a reference in another rule even
another invocation of the same rule. The values of a-value are, of course, constant during
the invocation of each rule.

3.9.3. The Declaration of Rules in a Knowledge Source

An example of a rule and a Knowledge Source might be as follows

Knowledge Source An-Example-Knowledge-Source
Definitions :

The-Serial-Number, The-Flock
The-Sheep & .Serial-Number .?Flock

Rule : Tell-the-user-when-a-sheep-has-moved
Class : Sheep
Field : Position

Condition Part :
When : The-Position # :Unknown and The-Flock # nil
If The-Serial-Number # nil

Action Part
Changes

Change Type : Update
Updated Node The-Flock
Updated Fields :

Sheep-Positions <- List (The-Sheep, The-Position)

Otherwise Part
Execute :

Poligon-Format
("An unnumbered sheep -A has moved.-%",
The-Sheep)

Here there is one definition at the Knowledge Source level that is used inside the rule.
There are two forms of rule; normal rules, which will be described here, and Expectation
Rules, which are largely the same but will be described in Section 3.9.3.10, the section
concerning Expectations, in order to put them into their correct context.

Rules have four distinct parts; a Rule Header, a Condition Part and an Action Part and an
optional Otherwise Part. The Rule Header specifies the class of the entity to which the rule
is associated, a Field to which it is attached and allows Definitions to be made, which are
local to the rule. The field specified can only be a Field of Instances of the class specified,
either directly or through Superclasses of that class. The rule will be attached to all
Instances of the specified class.
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3.9.3.1. Special Names

Within the scope of a Knowledge Source one special name is available. This is The-
Triggering-Node. Within the context of a rule it always represents the Node which caused
the Event on the Field which triggered the rule.

Within the scope of the "Updated Class Fields" part of a "New Instance Of' construct the
identifier The-Created-Node represents the node, which has either been created by the op-
eration or selected as a result of the Unless part.

Within the body of a rule, after the specification of the Class and the Field to which the rule
is to be associated, two special names are available to the user. These are derived from the
names of the Field and class specified. They are derived by prefixing The- to the names
given in the class and Field specifications. They represent the Node that experienced the
Event and the values of that Field that changed when the Event was caused. In the case of
the above example the name The-Sheep is an example of the THE-<class-name> construct
and refers to the Sheep Node on which the rule hangs, to which an Event happened. If the
value of the Value List in the Field, which had the Event caused to it, is Empty then the
value of the THE-field-name identifier will be the :Keyword :Empty.

In all of the contexts in which names mentioned above are legal the user may, instead use
the names The-Node to denote the node for which the rule in question is being triggered
and The-Field or The-Slot to denote the Latest value in the field which was triggered.

3.9.3.2. The Rule Header

The header of a "Normal" rule consists of three components, one of which is optional and
two of which are mandatory. The format of the headers for Expectation rules will not be
covered here, since they are described fully in Section 3.9.3.10.

The first and second components are mandatory, they are specifications for the class and
Field with which the rule is to be associated. The rule will be associated with each Node
on the Blackboard, which is an Instance of the class specified.

The third element in the Rule Header is the Definitions Part. It is optional and acts just like
the Definitions Part for Knowledge Sources only the Definitions made are only visible
within the defined rule.

3.9.3.3. The Condition Part

The Condition Part of the rule consists of two mandatory parts and four optional parts.
These are the When Part, the If Part and their associated Forcings (see Section 3.9.1) and
the Select Part and its associated Forcing. These represent three separate parts of the pre-
condition. The When Part is executed as soon as an Event happens on the Field to which
the rule is attached. It is intended to refer only to the Node that has been affected. Thus it
can be evaluated quickly. If this clause delivers a value other than nil then the firing of the
If Part is scheduled. It is by no means guaranteed that the If Part will fire "immediately"
after the When Part. The If Part may refer to any Node in the system, though doing so
may result in communication delays. If the If Part of the rule delivers a value other than nil
then the rule will schedule the Action Part to fire if no Select Part has been defined. If a
Select Part has been provided then this is evaluated. Again there is no guarantee that the
Action Part will fire immediately after these. If the value of the If Part predicate is nil or the
Select Part expression, if it has been provided, does not select an Action Part body then the
Otherwise Part of the rule is scheduled for firing, if the rule has an Otherwise Part.
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The Select Part, if it is provided, is used to select one of a collection of Action Part clauses.

This is explained more fully in the next section.

For information concerning Forcing components please see Section 3.9.1.

3.9.3.4. The Action Part

The Action Part consists of three main components, a Definitions Part, a part in which ac-
tions take place as a direct consequence of the Condition Part of the rule being non-nil and,
optionally, a part which is invoked if the If Part of the rule evaluates to nil.

In the example above the Action Part of the rule has no Definitions part. Such a Definitions
Part would be present to allow Definitions that are specific to the Action Part in a place that
seems meaningful. Of course the Lazy Evaluation mechanism guarantees that there would
be no difference in semantics if an Action Part level definition was moved to the rule level.

The Action Part of the rule can have two distinct formats. The first occurs if the user does
not provide a Select Part in the Condition Part of the rule. In this case the user can define
any number of Changes or Execute components. These Changes or Execute components
will be run in Parallel. No serial dependencies should be allowed between them. A similar
collection of Changes and Execute components can be defined in the Otherwise Part of the
rule. These will be executed if the If Part of the rule fails or the Select Part, if provided,
does not find a matching Action Part body.

If the rule provides a Select Part then the value of the expression in the Select Part is used
to match against keys specified before any number of Action Part bodies, like those de-
scribed in the preceding paragraph. The system will execute the first Action Part body
whose key = the value of the Select Part, checking the keys in the same order as the lexical
order as in the source program. At most one such body will be executed, such bodies are,
therefore, mutually exclusive in their operation. An example of a rule with a Select Part
and multiple Action Part bodies is shown below.

Knowledge Source An-Example-Knowledge-Source
Definitions :

The-Serial-Number, The-Colour a
The-Sheep & 'Serial-Number & *Colour

Rule : Tell-the-user-when-a-sheep-has-moved
Class Sheep
Field Position

Condition Part :
When The-Position # :Unknown
If The-Serial-Number * nil
Select If The-Colour = :Black

Then :A-Black-Sheep-Has-Moved
Else :A-Non-Black-Sheep-Has-Moved
ErdIf

Action Part :
:A-Black-Sheep-Has-Moved
Execute :
Poligon-Format("Black sheep -A has moved.-%",

The-Serial-Number)
:A-Non-Black-Sheep-Has-Moved
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Execute
Poligon-Format ("Sheep -A has moved.-%",

The-Serial-Number)

Otherwise Part
Execute :

Poligon-Format ("An unnumbered sheep -A has moved.-%"
The-Sheep)

In this example, a message is printed out to show that a Sheep has moved as long as the
sheep's position is known. If the sheep has no known serial-number then a suitable mes-
sage is printed out. Black sheep are given special treatmet, as one would expect. Within a
Changes component the user may specify any number of Change components. These are
defined to operate in series. Each Change represents an update to some Node or
Collection of Nodes, which can entail a modification to any number of its Fields or an
Event, which is to happen to a Node.

One of the types of Change is the In Parallel for Each construct This does not change just
one Node but allows the user to define a change to be made to a collection of Nodes. This
should not be viewed as a loop, since its components are executed in parallel. No serial
dependencies should be allowed between the elements. Within such a construct a local
symbol denotes the value of the element of the collection of Nodes being considered.

Within the body of a Change five forms of Change Type are permitted. These are as fol-
lows:

Cause Events Allows the user to cause an event on the field, that is, to
make it look as if the Field has changed, without changing
the value in the Field. This is a form of semaphore to the
rules that are attached to that Field.

Discard This allows Nodes, which the user is no longer interested in
to be (somewhat) switched off and made invisible to Subset
operations.

Expect This is covered in Section 3.9.3.10, the section concerning
Expectations. It is a mechanism for the allocation and spe-
cialization of knowledge dynamically.

Recycle This allows Nodes, which the user is certain have been fin-
ished with, to be reused.

Update Allows the user to update any of the Fields in the referenced
Node.

3.9.3.5. The Cause Events type of Change

The Cause Events type of change is very simple. Events can be caused on any number of
Fields which can be seen by the Node under consideration. An example of such a change
might be as follows

Changes :
Change Type : Cause Events
Updated Node : an-expression-delivering-a-node
Updated Fields :

A-Field
Another-Field
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In this case two Fields in the Node defined by an-expression-delivering-a-node are being
told that Events have happened to them. The Fields are referred to by name. In this case
they are A-Field and Another-Field. The value of THE-<Field> when a rule is triggered
by such an event is a multiple values object whose only value is the Node, which caused
the event.

3.9.3.6. The Discard Type of Change

This change type allows Nodes, which have been finished with, to be discarded. This op-
eration is similar to, but should not be confused with, the Recycle type of change, men-
tioned in Section 3.9.3.7. This operation does not in any way delete the Node in question.
It does however have the following effects:

• It deletes any links coming out of the Node in question.
• It has the Node removed from the Subsystems Field of its Supersystems Node.
* It has the Node removed from the Instances Field of its class Node.
* It disables the clock on the node, so that clock driven Expectations and pending

timeouts will not be activated.
" It unhooks the Node from all of the rules, which are associated with it.

This means that, although the model is still allowed to read from and write to the Node,
rules, which watch these fields will not be activated.

This Change Type should be used with caution. An example of its use follows.

Change Type : Discard
Updated Node : a-node

I i this case the Node a-node is discarded.

3.9.3.7. The Recycle Type of Change

This change type allows Nodes, which have been finished with, to be recycled. It is very
difficult to determine in any general sense whether a Node can be recycled so Poligon opts
for a user defined mechanism. Even in this case, it is difficult to determine whether a Node
has been finished with and can safely be recycled. The only case in which the user can be
sure that it is safe to recycle a Node is when the rules associated with the class of Node in
question are all mutually exclusive in their operation, no other rules in the system read from
or write to this class of Node and all of the activities in all of the rules are complete. Thus
this mechanism is usually only meaningful at the lowest level of abstraction in the model at
which signal data enters the Blackboard and propagates its data upwards and has rules
which only fire once on the Node, when it is created. Even in this case it is only safe to re-
cycle the Node if the Action Part of the rule has only serialized change types, or if the paral-
lelized change types read Fields of the Node in question through Forced Definitions.

An example of the use of this construct follows

Change Type : Recycle
Updated Node : a-node

In this case the Node a-node is recycled. When a Node is recycled it is reset, such that all
of its Fields are reinitialized. Any links coming out of this Node are removed (see
Appendix R for more information concerning links). It is then removed from the
Subsystems Field of its Supersystems Nodes and from the Instance-Of Field of its class
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node kept for the time when the next call to the New-Instance of construct for that class of

Node is made, when the recycled Node is used instead of creating a new node.

3.9.3.8. The Update Type of Change

In an Update Change the user defines those Fields that are updated. This is by far the most
commonly used Change Type. This is done by specifying a collection of fieldname/Update
Operator/value triples. An example of this might be:

length <- 3 ! an-expression, another-expression

This causes the system to attempt to add the values derived from the expression 3 + an-ex-
pression and the value of an-expression to the values of the Field called length. This is
akin to the Modify operation in AGE. One of the major differences in Poligon, however is
that the user is not constrained to one type of update as he was in AGE. The nature of the
update performed, as a result of these attempts is, by default, simply adding them to the
Value List. More complex and conditional modifications can be defined by the user on a
per-Field basis. This is explained in Sections 3.3.4 and 3.4.2.1.

It should be noted that the default mechanism in Poligon is to cause an event, that is to say
to enable the triggering of any associated rules, on any Field that is successfully updated.
It is possible that, for some reason, the user might want to update a Field without triggering
the rules that are watching it. To do this the user should use the optional pragma NoEvent.
If the above example was explicitly expected not to cause an event then it would appear as
follows.

length <- NoEvent 3 + an-expression, another-expression

It should be noted that this facility should be used with caution, since it might compromise
the modularity of the system. This facility is, in a sense, related to the Cause Events
Change Type.

Because the user might want to specify a number of arguments to an update operation
which are determined at run-time Poligon provides a mechanism to support this. This is
somewhat equivalent to the Apply function in Lisp. This is achieved by the use of the "&"
modifier. The following two lines of Poligon code are equivalent.

length <-3 + an-expression, another-expression
length<-& List (3 + an-expression, another-expression)

There are a number of predefined Update Operators. These represent the operations asso-
ciated with the addition of elements, the removal of elements and the replacement of all of
the elements in the Value List.

The representations of these operators and their default effects on an old value x with
operands y and z are shown in Table 3-8. It should be noted that this behavior can be
modified significantly by user defined behavior for Fields, thus this table represents only
the default mechanism. For more information on how to modify this, please see Sections
3.3.4 and 3.4.2.1.
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Operator Name Effect
x , z Modify List(, z) 4 x --> x
x *y, z Remove Element (x Without y) Without z -- x
x--- y, z Replace Value List y - x

[only 1 operand allowed]

Table 3-8 Poligon Update Operators and their effects

To illustrate these operators in operation a few examples are given in Table 3-9 In these
examples it is assumed that the field, which is being operated on is called x. The values in
the Value list of this field will be shown in braces, such as a b c"
Values in x I Operation New values in x
(abc) x <-d (dabc)
(abc) x d,e (deabc)
(abc) x -*d (abc) _

labcb) x *b (ac)
{a bc I} x --List(d, e) [d e)

Table 3-9 Examples of the use and effects of Update Operators

These Update Operators have readily printable synonyms associated with them. These are
shown in Table 3-10.

Normal Easily Printed
~<-

Table 3-10 Poligon Language Update Operators and their easily printed
representations

It should be noted that the operation "--- list(d, e)" is only a shorthand for "+- Empty"
followed by "- d, e" or "(- & list(d, e)".

An example of the user definition of an Update Operators is specified below:

Declare-.Update-Operator('+- , :Modify, :Poligon)

The first argument given to this function is any legal operator specification. The second is
a keyword denoting the name of a method for the flavor Basic-Slot, which knows about
how to make the update to the Field. The :Keyword :Poligon simply denotes the language
for which this operator is being defined. 1

3.9.3.9. The "In Parallel For Each" Construct

The In Parallel For Each construct is the closest that the Poligon language gets to a "loop".
This construct is not strictly a Change, it is a way of expressing a number of Changes of
the same type that are to be done to a number of Nodes. As is the case with most "loop"
constructs the In Parallel For Each construct uses a declared identifier to represent the ele-

lNote: The user is strongly discouraged from writing his own Update Operators. The user should be able to
get all of the desired behavior by writing his own behavior for his fields. For information on this issue,
please see Sections 3.3.3 and 3.4.2.1.
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ment from the original collection that is being considered. Thus will have the effect of exe-
cuting the Update Change to each element in a-flock-of-sheep.

In Parallel For Each lamb In a-flock-of-sheep
Change Type : Update

Within the scope of the Change the identifier lamb represents the only element of the origi-
nal list which is visible to the Change as an individual. It should be noted that the name of
this construct was chosen to stress that it should not be thought of as a loop.

The expression which delivers the collection of Nodes to be considered, in this case a-
flock-of-sheep, can deliver any collection or Node. If a Node is delivered then it denotes
the Subsystems of that Node.

3.9.3.10. Expectations

It is difficult to define what is meant by Expectations in the AGE sense within the metaphor
of Poligon. What is generally meant to be the case with an Expectation is that the user is
supposed to be able to watch a specific piece of information and wait for it to change, such
that when it changes some sort of action takes place. It is a form of attention focussing
mechanism.

In Poligon this is interpreted as being a requirement to watch particular fields on particular
Nodes and wait for them to change. Posting an Expectation in Poligon, therefore, means
assigning a rule at run-time to a particular Node and attaching it to a particular Field. A
special syntax has been defined to allow this as a Change Type and rules themselves are
allowed to take Arguments in order to support the transfer of context as might be required
by the user. This is described below.

The Expectation mechanism allows the user's model to parcel up as much context as he
wants at the time that the Expectation is posted. What the user has to do is to specify the
name of the rule that is to be attached, the Node to which it is to be attached and the Field
that it is to monitor. After this there are a number of optional items that the user can pro-
vide in order to customize the rule that represents the Expectation. An example of an
Expectation being posted follows.

Changes :
Change Type Expect

Rule Watch-To-See-If-This-Is-A-Flock-Leader
Node The-Sheep oFlock
Field Position
When The-Expected-NodeoSheep-Positions -

The-Sheep
If t
Active t
Delete nil
Timeout The-Flock*Clock + 10
Definitions :

The-Current-Position = The-SheepoPosition

In this case an Expectation is being posted within a rule, which is associated with the class
Sheep. The rest of this rule is not shown but the identifier The-Sheep refers to the Node
for which the rule is being fired. A rule called Watch-To-See-If-This-Is-A-Flock-Leader is
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being attached to the Position Field of the Node designated by the expression The-
Sheep.Flock. The idea, here, is to watch the flock associated with the sheep in question in
order to see whether its position tracks that of the sheep.

Two preconditions are provided. The When Part is an expression which is executed before
the rule attempts to fire its own When Part. The When Part of the rule will only be tried if
the When Part defined above evaluates to non-nil. The constraints on the When Part de-
fined here are the same as those on the When Parts of rules described in Section 3.9.3.3.
The same sort of behavior applies to the If Part. It is determined before the If Part of the
target rule is attempted. The If Part and then When Parts of Expectation expressions can be
any expressions. They may refer to the Node to which they have been attached by the
identifier The-Expected-Node and they may refer to the value of the Field to which the rule
has been attached by the name The-Expected-Field. Either of these items may be omitted,
in which case they will be assumed to be "t".

There are four more optional components. These are discussed below.

Active This is a predicate which determines whether the Expectation
is active or not. It is is not allowed to see the names The-
Expected-Node or The-Expected-Field. It can, on the other
hand see an identifier called The-Time. This has the value of
the time at which the Expectation is trying to fire itself. If
the Expectation is supposed to become active only after a
certain time then this expression provides a means to denote
this. If this section is defaulted then the value "t" will be as-
sumed. This means that the Expectation will always be ac-
tive.

Delete This is an expression denoting a predicate which, when non-
nil will cause the association between the rule and the Node
to be removed. This component is evaluated after the When
Part of the rule has been evaluated. This means that if the
value of this expression is non-nil - the default is t - then the
association between the rule and the Node will be broken
after the first attempted firing. In the case above the rule will
never be disassociated with the Node in question. The de-
fault case is akin to a "Try-Once-Only" sort of firing. It
should be noted that the value of this expression does not in
any way affect the firing of the rule to which it is attached. It
only serves to preventfurther rule firings by dissociating the
rule from the Node, which is being watched.

Timeout The value provided here should be an expression, whose
value is a number. If the value is not a number then this will
be interpreted as meaning that the Expectation is to have no
Timeout. The number, which is the value of the Timeout
component, represents an absolute time after which the
Expectation is to time out. In this case the Expectation will
time out after ten time units from now. When the
Expectation times out it is detached from the Node which it
monitors and the Timeout Part of the Action Part of the rule
is executed if it is present. The time specified is the absolute
time in the same units as the time in the user's input signal
data, for more information on signal data see Section 3.6.

Definitions These are Definitions just like those anywhere else in a rule,
in that they associate names with values. These allow the
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user to define Arguments to rules and to pass context into
those rules.

As was mentioned above, rules are allowed to take Arguments. These are only meaningful
in the context of Expectations. The Rule Header for a rule, which is intended to be used as
an Expectation rule is different from that for a normal rule. In the case of an Expectation,
the rule is not associated with any particular class, Node or Field. Where normal rules have
defined, within their bounds, identifiers which denote the Node in question and the value
of the Field in question, so do Expectation rules but they are referred to by the generic
names The-Expected-Node and The-Expected-Field. An example Rule Header for an
Expectation rule is shown below.

Rule : Watch-To-See-If-This-Is-A-Flock-Leader
Arguments : The-Current-Position

In this case the rule, which was referred to above is being defined. It has two Arguments.
Note that these Arguments have the same names as those used above in the Definitions.
The Arguments are associated with their actual values by name and not by position. Within
the rules the Arguments act just like items defined in a Definitions Part. This means that an
Argument to a rule is not necessary unless the evaluation path of the rule requires its value.
If an Argument has not been specified for a value, which is needed, an error will be flagged
at run-time.

The Action Part of an Expectation can have an extra construct, which is a Timeout Part.
This is executed if the Expectation times out. An example Action Part for this rule might be
as follows:

Action Part :
Execute :

Debug-Format ("-&The expectation has fired.")
Timeout Part

Execute
Debug-Format ("-&The expectation timed out.")

3.10. Atomic Operations and Critical Sections

Poligon is a system which goes to considerable pains to minimize the length of critical sec-
tions, so as to enhance parallelism. However, there are times when the user may need to
know that certain operations are performed atomically so as to guarantee consistency or
meaningful behavior. This section enumerates the operations provided by the system,
which are guaranteed to be atomic, and also mentions how, to some extent, user defined
code can be executed within a critical section.

There are three main types of atomic operation:

Field Selection The execution of any field selection operation is atomic.
This applies both to the reading of single fields and multiple
fields. Arbitrary user defined, side-effect free code can be
executed within a user defined field selection operator.
A form of atomic read/write is provided as an extension to
field selection operations. This allows atomic "test and set"
operations to be implemented. An example of this form is as
follows:
a-node-a-field
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Unless : a-node-a-field = 42
Updated Fields

a-field <- 42
The semantics of this is as follows. All.reads to the node in
question and the values of those reads are cached. If an
Unless component is provided then this is evaluated and, if
its value is Nil, the update is performed. If no Unless part is
provided the update happens unconditionally. Once the up-
date has been performed the original values read from the
fields are returned.
Thus, in the example above, the field a-field is set to 42 if it
wasn't before and the original value is returned.
By means of this mechanism user defined locks can be im-
plemented. No reference to nodes other than the node in
question are permitted in the right hand side of the update
component, other than by means of definitions. All defini-
tions specified in the right hand side of the assignment are
evaluated before entering the critical section.

Field Updates The execution of an Update Operator is atomic. It should be
noted, however, that this does not.guarantee the atomicity of
the evaluation of the arguments to that operator. For in-
stance, in the following update component all of the right
hand sides of the operators are evaluated first, and then all of
the updates are performed together, atomically.
Updated Node : a-node
Updated Fields :

field-i *- <expression-i>
field-2 (- <expression-2>

This has the effect that, although all of the updates happen
atomically the contents of the fields being updated may
change between the times that the expressions are evaluated
and the update is made. For this reason it is not advisable to
write code of the following form.
Updated Node a-node
Updated Fields

field-i (---
if a-value Is-In a-nodeDfield-i
then a-hodeefield-1
else a-value *4

a-nodeEfield-i
endif

To achieve this sort of thing the user should either provide
Field behavior modification functions as specified in Section
3.4.2.1 or, if the user is really desperate, an Update
Operator of his own.

Node Creation One of the things which it is very important that the system
should be able to do atomically is the conditional creation of
nodes. A full exposition of the syntax for this process can
be seen in Section 3.3.3.3 so this section will dwell on the
exact evaluation model for the optional Initialisation, Unless
and Update components.
The Unless and Updated Class Fields components of a New
Instance Of are both evaluated in the same way. Any defi-
nitions present in these expression are evaluated in the con-
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text of the current execution, outside the critical section in
which the node creation occurs. The remainder of these ex-
pressions is evaluated by the Class Node within a critical
section. No references to. any nodes, other than the class
node may, therefore, be made in these expressions, other
than through the definitions, which will already have been
evaluated. As usual for update operations, the right hand
sides of the update components are evaluated before the up-
dates happen, though, unlike a normal update, the right hand
sides are evaluated atomically in the same critical section as
that in which the Update Operators are executed.
The Initialisation component is evaluated in a slightly differ-
ent manner from the Unless and Updated Class Fields com-
ponents of a New Instance Of, since the initialization must
happen to the node which has been created, not to the Class
Node, which has done the creation. As is the case with the
Updated Class Fields and Unless components, all definitions
referenced within the body of the initialization expression are
evaluated in the context of the current execution, before the
critical section isentered on the Class Node. When the criti-
cal section is entered on the Class Node all subexpressions
which are field reads and refer to the same expression that is
being used to denote the class node in the overall New
Instance Of expression are evaluated on the Class Node.
This means that these reads will be executed atomically be-
fore any of the updates are made. Once this has happened
the new node is created in such a way that the remaining
right hand side expressions for the initialization is executed
atomically on the newly created node.
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4. The Poligon Run-time System and how to use It

The Poligon system consists of two components; the Poligon Compiler and the Run-Time
System. The language defined by the former is described in Section 3. The latter is de-
scribed here.

The Run-Time System for Poligon has two main parts. First there is the underlying archi-
tecture that supports the Poligon system in either its Serial or Parallel modes. This pro-
vides the Blackboard itself, handles signal input and initializes the system. Secondly there
is the user interface. This is a constraint frame with a number of panes, which have a
number of mouse sensitive features, which are intended to allow easy debugging and con-
trol of the system. There is a trace and breakpoint facility, which is integrated into the user
interface. The system comes with what, it is hoped, is a rich set of facilities to help the de-
bugging of Models.

4. 1. How to get a Model to run under Poligon

When the Poligon system is loaded, both the Serial and Parallel mode run-time systems are
loaded along with the compiler. This is done as follows.

(Make-System 'Poligon :Noconfirm :Silent :Nowarn)

The user is advised to use only the Serial mode until his model is well debugged. The
Parallel version is hugely slower. It is also less easy to debug Poligon Models in the
Parallel environment.

Once the Poligon system has been loaded the user's model can be loaded. The model has
to be compiled with the Poligon Compiler. The generated code must be compiled using the
Common Lisp compiler. During rapid development it may be easiest to do this by doing a
Meta-X Compile RegionlBuffer on the compiled model when it is loaded in Zmacs. If it is
quite stable, however, it may be worth compiling as a file. The generated code from the
user's model is generally rather large; it may take some time to compile. The model should
compile without errors, though if any Knowledge Source level Definitions are made that
are not used within a given rule then a free reference warning will be given, though this is
not fatal. Once it has been compiled the model must be loaded. This is done automatically
if it is compile by using Meta-X Compile Buffer. This leaves the system in a state in which
it is ready to be activated. The Poligon Control Frame will have been created, though it
will not be activated and is not selectable until the system is started up.

To start up the system you should execute the function:

(Run-Poligon)

to get the Serial mode or

(Run-Poligon t)

to get the Parallel mode of operation. The user can always chop and change between the
Serial and Parallel modes by executing this function in the appropriate form.
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The Poligon system will then be activated, the Control Frame will be activated and exposed
and the system will stay quiescent until the user selects an option such as Run (see Section
4.3.3 on the Command Menu).

4.1.1. Resetting Poligon

At times the Poligon system may get confused, either due to the window system locking up
or due to the Knowledge Base getting confused by incremental changes made during de-
bugging. It is therefore useful, at times, to reset parts of the Poligon system in order to cir-
cumvent some of these problems. This is done using the procedure Reset-Poligon. A call
to this procedure will ask a number of questions of the user, which ask which parts of the
system should be reset. The user should not attempt to run the Poligon system after a call
to this procedure without using the Run-Poligon procedure to start it off. If the Poligon
Control Frame has been recreated then it will not be selectable until the Run-Poligon proce-
dure has been called. Clearly if the Knowledge Base is reset the user's knowledge will
have to be reloaded.

4.2. The Underlying Architecture

The underlying architecture of the Poligon system has been mentioned in the introduction to
this document. Here a little more detail will be added and the differences between the Serial
and the Parallel modes of operation will be given.

The Nodes, be they Class Nodes, the Poligon-Blackboard Node or normal Nodes, are im-
plemented as instances of Flavors.

No Nodes are defined at load time. The Poligon-Blackboard Node, which is the first Node
to be created by the system, when it initializes a simulation run, is an Instance of the class
Root and has special knowledge about the shape of the Blackboard because it has access to
a data structure which holds information concerning the identities of all of the Classes and
all of the rules associated with them.

When the Poligon-Blackboard is created and the system is initialized it creates Instances of
Class Nodes to represent each of the user defined Class Nodes and any system defined
Metaclasses. The rules for the system are then distributed so that each class knows about
the rules that are to be associated with Instances. Once the system has initialized itself an
Event is signalled on all of the Subsystems and Instances Fields of the Nodes that have
been created. This allows user defined Initialisation rules, which are associated with these
Fields to fire at this point.

Once this has happened the user's Initialisation code is executed, the signal data file is

opened and the system starts up properly.

Rules are implemented as instances of rule flavors.

Each time a Rule's invocation gets past the When Part a context packet is created for that
specific invocation. This is a specialized Node-like Poligon object of the flavor Context.

All actions within the system are performed by message passing, though this is not visible
at the language level. Even the reading of a Fieid value on the same Node causes the sys-
tem to send a message to itself, though this special case has been optimized.
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4.3. The Poligon User Interface

The Poligon User Interface is intended to provide an easy to use method of observing the
operation of the user's model and debugging it. Poligon constructs a constraint frame, the
Poligon Control Frame, in which to display all of this information. Once the Poligon frame
has been exposed it can be reexposed by typing "<System><escape>". The constraint
frame consists of a number of panes, which are described in this section.

4.3.1. The Lisp pane

This is the large pane on the right of the frame and is used for the display of trace informa-
tion and user debug output. It is a Lisp Listener window, so the user can type any neces-
sary system commands in this pane. If tracing is enabled for any component of the system
then it is displayed in this window. The user can write into this pane by means of a num-
ber of printing procedures, which are specified in Appendix 0. This pane has More pro-
cessing disabled by default.

4.3.2. The CARE Pane

This is a pane which contains any CARE instruments that are being used by the system. It
can be found below the Lisp pane. If the CARE system has not been loaded and, there-
fore, Poligon is being run in its Serial mode then this pane is not configured in. For infor-
mation on the meaning of the CARE instruments the user is advised to consult the relevant
CARE documentation.

4.3.3. The Command Menu

The Command Menu is on the bottom of the frame on the left. It is by the use of this menu
that the user selects those facilities that are concerned with the overall control of the system.
Each item has documentation in the "who-line" but a complete list of all of the implemented
commands with a brief description is given below.

Abort This causes the execution of the user's model to be aborted.
Circuit This command pops up a menu and allows the user to select

a Circuit (Design) to use for the simulation. This command
is only meaningful in the Parallel mode.

Configuration This command pops up a menu and allows the user to select
a configuration for the Poligon.control frame. A number of
configurations are available; some with CARE instrumenta-
tion and others without. Poligon will typically pick a rea-
sonable configuration for its display, so this command is
used mainly as an override.

Dribble Off This command causes the Dribble File, specified by the
Dribble File option of the Parameters command to be closed
so that dribbling stops. (see Dribble On)

Dribble On This command causes all output to the Lisp pane, the
Message Pane and to *Trace-Output* to be sent also to a file
named by the Dribble File option of the Parameters menu. If
a dribble file is already open then this is closed and a new
one is opened.

Log This command will cause a file to be written which has a
printout of the current state of the Blackboard. The file
written is that named by the Log File option of the
Parameters command. The clock is not stopped during the
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execution of this command. It is intended to be used once a
breakpoint has been found.

Parallel This command sets Poligon to run in-Parallel mode. It is
equivalent to the procedure call (Run-Poligon t).

Parameters This command allows the user to select the values for a
number of CARE and Poligon system simulation parameters
and a number of variable attributes used in the system, such
as file names for printing things out. The action of these is
listed below.

Display All Data Structures A number of Poligon internal data,
structures contain detail which is not of impor-
tance to the debugging of Models as a whole and
which cause the screen to be cluttered. If this
flag is set,then all of the structure of these internal
data structures will be displayed. If it is reset
then the important information that they contain
will be displayed but their structure will be dis-
played minimally.

Allow All Trace Within Abortable Code If this flag is set to
Ignore then whenever Poligon enters any code
which might be aborted trace operations are dis-
abled. If it is set to Only when successful then
the printing of the trace messages generated in
abortable code is only allowed after the section
has been exited without being aborted. This
saves confusing trace messages from being
printed out. The default value for this flag is
Only when successful.

Enable Breakpoints Within Abortable Code If this flag is
set then whenever Poligon enters a breakpoint
within any code which might be aborted the
breakpoint will take effect. Normally the user
will not want such breakpoints to happen but in
hunting for obscure bugs he might. The default
value for this flag is No.

Trap On Errors Within Abortable Code If this flag is set then
whenever Poligon enters an abortable code seg-
ment and finds an error it will trap. This is not
normally a desirable state of affairs, since whilst
experimenting'Poligon might well try to execute
code with very bogus arguments. Occasionally it
might be useful to the user, however, since erro-
neous code might be called only within abortable
segments. The default value for this flag is No.

Trace If Segment Takes Longer Than n usecs If this is an
integer then a message will be printed out if a
segment of user code took longer than n mi-
croseconds to execute.

Inspect Details Of Structures If this flag is set then any data
structures whose print methods use mouse-sen-
sitive printing facilities will be printed in a fully
mouse-sensitive manner in suitable windows.
These include inspector and debugger windows.
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Action on Deadlock This controls what happens when a deadlock
condition is found in the Serial mode. Three op-
tions are provided: Stopping with an error, noti-
fying the user in the trace window or ignoring the
condition.

Metering Selecting this option will cause the execution of
the model to be metered when running. For in-
formation on the metering system please read the
system documentation for the metering package.

Metering Micro Enables This option allows the user to set the
value for the %meter-micro-enables used when
metering. For more information on this subject
the user is directed to the relevant TI documenta-
tion.

Count Down Space in Metering Partition It is typically
the case that the size of the metering partition
supplied in any given machine will only be large
enough to allow the metering of a few seconds of
Poligon application code execution. Since hav-
ing metering enabled slows execution down
considerably it is often a good idea to enable this
option so that the user can see when the metering
partition is filling up and can abort the run. Once
the metering partition is full, no more useful data
will be gathered.

Start Metering After Data Time Because it is generally only
possible to meter small amounts of application
code, it is usually a good idea only to meter a
point in the simulation's run when it is known
that something worthy of metering is happening.
If this parameter is set to a number then metering
will not be enabled until after the domain time
specified by that number. Metering will then stay
on continuously until the metering partition is
filled.

Compilation Factor This is a number that the user can specify
which will allow the user to experiment with the
system whilst pretending that the compiler is
better than it really is. A value of 2, for instance,
would indicate that the system should pretend
that user evaluations take half as long as they
really do.

Parallel Metering Slow-Down Factor When running with
metering enabled the CARE simulator's idea of
timing is skewed by the slower execution of the
user's code. This parameter allows the user to
compensate for this by telling the system that,
when metering is enabled, it is to scale its timings
by the factor specified.

Jump the clock when idle This option is only meaningful in the
Serial mode. When this option is set to Yes the
clock is advanced to the time at which the clock
would next tick if there are no outstanding events
to be processed in a given clock tick period.
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Internal Debug Messages Enabled If this flag is set then any
Poligon internal debug print messages will be
printed. This feature is used primarily for system
development purposes or the finding of Poligon
system bugs.

CARE Debug History If this flag is set to the Enabled value.
then the CARE simulator's internal debug history
recording mechanism is enabled. The default
value for this parameter is Disabled. This option
is primarily of interest for Poligon system de-
bugging and is unlikely to be of much use in the.
debugging of Poligon models.

CARE Evaluator Processing This sets the value of the
CARE internal flag which determines the time
taken to evaluate a body of code in a CARE eval-
uator. A value of Nil, the default, for this pa-
rameter will cause the actual code's execution to
be timed.

Automatic GCing 1.1is flag is used in order to control Garbage
Cc!;ection. It can take three values; When
Necessary, in which case the system will execute
a GC-Immediately when it is determined that it
needs more memory [Parallel mode only];
Temporal, in which case the normal, temporal
GC is used, or Never, in which case the GC is
switched off altogether. The latter can be useful
for timing tests of one sort or another or for runs,
which are known to be short enough that the
system will not run out of memory, but a long,
slow GC-Immediately might be executed because
the GC monitor does not know that the simula-
tion is -earing its end.

Window Fonts This is a list of the fonts in which the user would
like different sorts of output to be displayed. The
list is in the following order. Trace information,
General system information, User output.

File Fonts This is a list of the fonts in which the user would
like different sorts of output to be printed to files.
The list is in the following order: Trace informa-
tion, General system information, User output,
CARE messages.

Log File This is the name of the file used by the Log
command.

Input File Default This is the name of the file used for a default for
the signal input file if the user has not supplied
the function Get-Input-File-Name

Statistics File This is the name of the file used by the tr;istics
command.

Dribble File This is the name of the file used by the Dribble
On command.

Serial Clock Rate This is the number of system 60Hz clock ticks
which are equivalent to one tick of user input data
time, when running in the Serial mode.
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Parallel Clock Rate This is the number of CARE system clock
ticks which are equivalent to one tick of user in-
put data time, when runningin the Parallel mode.

Future Force Rate This value is used only in the Serial mode.
When the Scheduler decides that it is appropriate,
Futures are evaluated. When this happens a
block of unsatisfied Futures are evaluated. This
number indicates the number of unsatisfied
Futures that are evaluated in each block.
Adjusting this value will cause the Serial mode to
simulate, to some extent, differing communica-
tions network performance.

Abort After Input File Closed If this value is non-nil then the
system will wait for the number supplied of user'
time units after thesignal data filehas been read
in and closed and then it will abort the simula-
tion. Clearly this value should be set high
enough so that all processing will have been
completed before the processing is terminated.

Default AutoSave Interval This is the number of characters to be
printed to autosaving files, such as Dribble files
before they are flushed. The use of autosaving
files ensures that little data is lost in the event of a
system crash.

Filter Statistics This flag will, when set, cause statistics printed
to the statistics file to contain only those items
which are likely to be of interest to the average
user, as opposed to. : P-4i on system developer.

Redisplay Class Pane On Creation This flag will, when
set, cause the Class Monitor Pane to be redis-
played whenever a new Node is created.

Switch Dribble On When Your Run When this option is set
to Yes the system will execute a Dribble On
command whenever the Run command is se-
lected.

Trace Messages When this option is set to Yes or Verbose a trace
message is printed in the Message Pane, when
the system is running In its parallel mode for each
message posted by the system.

Trace Clock Ticks When this option is set a trace message is printed
out when the clock ticks.

Trace Signal Records When this option is set, trace messages are
printed out both when a signal record is read in
and when its processing has finished.

Break Clock Ticks When this option is set a the system executes
a breakpoint when the clock ticks.

Break Signal Records When this option is set a breakpoint is
executed when a signal record is read in.

Trace Rules When this option is set to Verbose the trace mes-
sages, which are produced when rules are being
traced are extended so that the node for which the
rule is firing is displayed. The default for this
option is Brief.
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Trace Node Creation When this option is set, a trace message is
printed when a Node is created.

Trace Message Punting When this option is set, trace mes-
sages are printed whenever the system has to
Punt. For more information on this issue please
see Appendix Q.3.

Break Message Punting When this option is set, a breakpoint
is executed whenever the system has to Punt.
For more information on Punting see please see
Appendix Q.3.

Scheduling Strategy This option sets a parameter which is only
meaningful when executing in the Serial mode.
The Serial version of Poligon attempts to repli-
cate the semantics of the parallelism of the
Parallel case by the relaxation of determinism in
the execution of rules, for both the Condition
Parts and the Action Parts. In order to support
this, Poligon comes equipped with a primitive
scheduler. This scheduler is parameterized in
order to allow the testing of the system in the
Serial mode with different scheduling character-
istics, allowing testing for any unsuspected serial
dependencies. There are two sorts of tasks that
are scheduled; the Condition and the Action Parts
of the rules. A data structure holds these tasks
and the scheduler simply selects a task from this
collection. There are four different scheduling
strategies available, which can be selected by a
menu. These are:

LIFO Tasks are processed in a last-in-first-out
manner.

FIFO Tasks are processed in a first-in-first-out
manner.

Random Tasks are picked at random from the pending
events.

Immediate Tasks are processed a soon as they are gen-
erated. This is a sort of depth first behaior
and is quite different from LIFO.

Stop At Or After Time When this option is an integer a
breakpoint will be executed when the system
clock reaches or passes this time.

Stop At Or After Signal Record When this option is an integer
a breakpoint will be executed when the system
reads or has read this signal record.

Which Instrument To Use This option lists all of the CARE in-
struments that are loaded and allows the user to
select the desired one. The instrument called
Poligon's is special in that it is configured into
the Poligon Control frame. If an instrument
other than this is selected then no instrument will
be configured into the Poligon control frame and
the instrument should be selected with
<System>-S. This option is only meaningful in
the Parallel mode.
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Hardcopy Minutes When this option is set to a number then this
is interpreted as being the number of-minutes to
wait between performing screen dumps of the
instrument. This option is only meaningful in the
Parallel mode.

Record Message Times In Log File When this option is
selected Poligon will time the execution of the
messages that are sent between processors in the
Parallel mode and will output this as a trace to a
file. This allows the user to find expensive op-
erations.

Record Message Times In List When this option is selected
Poligon will time the execution of the messages
that are sent between processors in the Parallel
mode and will keep these in a list. This is useful
if one wants to filter the traced messages progra-
matically.

Message Time Log File This is.the name of the message time
log file which is generated by the Record
Message Times In Log option above.

Log Messages Lasting Longer than N ms When this op-
tion is set to a number then the messages logged
by the options above are filtered so that only
those messages that take longer than this value
(in milliseconds) will be logged. Lots of system
messages are very fast and it is usually a good
idea to filter these out..

Redisplay This causes the screen to redisplay itself. The reason for this
command is that the Class Monitor Pane (see Section 4.3.6)
does not redisplay itself when new Nodes are added, in the
Serial mode. This is the case because of the frequency with
which new Nodes are created and -the the time taken by
scrolling windows. Selecting this option will make the
Class Monitor Pane display the latest results.

Run This option causes the system to attempt to run the user's
model.

Serial This command sets Poligon to make it run in Serial mode.
This command is equivalent to a call to the procedure (Run-
Poligon).

Statistics This option allows the user to print out some statistics asso-
ciated with the messages sent by the system. These statistics
are printed out to a file named by the Statistics File option of
the Parameters command. These statistics are in four forms;
the message frequencies sorted by message name, the mes..
sage frequencies sorted by message frequency and the full
message information sorted by message frequency and with
the origin and target of the message displayed. Finally the
distribution of the nodes/contexts on the sites in the system
is shown.

4.3.4. The Staius Pane

This is a small pane, which can be found just above the Command Menu. It displays in-
formation which might be of interest to the user during the execution of the model. The in-
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formation differs depending on whether the system is running in its Serial or its Parallel
mode. In the Serial mode the following information is displayed.

• The scale factor for the system clock. This is the number of simulator clock ticks
whici are used to represent one unit of user defined time.

" The system time, as measured in user time units.
* An estimate of the number of messages that would be posted in the Parallel mode.
• The number of events thai the scheduler has yet to schedule. These events are the

Conditon and Action Parts or rules. This value is always 0 when the Immediate
Scheduler option is being used. Following this value, separated by a vertical bar is
the number of Futures which are still to be processed and may yet be unsatisfied.

" The scheduling strategy being used.

In the Parallel mode the following information is displayed.

* The scale factor for the system clock. This is the number of system clock ticks
which are used to represent one unit of user defined time.

" The system time, as measured in user time units.
" The number of messages that have been posted.
" The number of agents "processes) that have been created and the number of active

stack groups, separated by a vertical bar.
* The number of user signal record that have been read.
• If metering is enabled then the percentage of the metering partition that has been

used.

4.3.5. The Message Pane

This pane is used in the Parallel mode in order ,,o show the messages sent in the system as
they are processed and any other bits of informadon that are likely to be of interest during
the execution of the model. This pine is not used in the Serial mode. if CARE is not
loaded then this pane is not configured into the Poligon frame.

4.3.6. The Class Monitor Pane

This is a pane which shows the items on the Blackboard. They are displayed as lines of
text. The type of Node is on the left; Superclass, class or normal Node and on the right is
the symbolic name of that Node. The pane is a standard scrolling window so you get the
normal scroll bar on the left. The items in the window are mouse sensitive. The three
mouse buttons induce different actions, which are documented in the who line. Their ac-
tions are as follows:

Left This generates a menu which allows the user to select a
number of trace and break options for this Node as a whole.
Trace and break points can be set for both Discard and
Recycle operations.

Meta-Left This option is much like the plain Left option. It generates a
menu which allows the user to select trace and break options
for the Instances of this Node if it is a class Node. Trace and
break points c- n be set for both Discard and Recycle opera-
tions.

Middle This causes the selected object on to be inspected in the in-
spector.

Meta-Middle This causes the values of all of the instance variables of the
selected Node to be displayed. They are printed out in the
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Lisp window on the right of the frame. The values of the
instance variables are printed out after their names.

Right This generates a menu which allows the user to select a
number of trace and break options associated with the Fields
of thisNode. The menu is a choice box type of menu.. All
of the fields of the Node are listed on the left and the types of
trace or break option head the choice box cclumns. Trace
and break points can be set to look at any of theFields in the
relevant Node. The trace and break points can be set so that
they can be activated when the selected Field is read from,
written to, has an Event happen to it or is Inherited.

Meta-Right This option is much like that for the plain right button only it
allows you to set trace and break points for the fields of all
of the Instances of the selected Node if it is a class Node.

4.3.7. The Rule Monitor Pane

This pane is much like the Class Monitor Pane. It is a scrolling window with mouse sensi-
tive items. In this case the items in the window represent the Knowledge Sources and their
rules. The rules are indented to indicate their membership of a Knowledge Source. Just as
is the case with the Class Monitor Pane the buttons on the mouse will induce different re-
sponses, when clicked over one of these items. Their actions are as follows:

Left Pressing this button will cause a menu to appear, which al-
lows the user to select trace and break options, which are as-
sociated with a given rule or Knowledge Source, rather than
Node or class as is the case on the Class Monitor Pane.
Knowledge Sources do not have any real meaning at run-
time so the Knowledge Sources mentioned here are taken to
be representations for all of the rules, which are mentioned
as being members of that Knowledge Source at compile
time. It is assumed that the rule writer will group his rules
into functional units at compile time and these units may also
be of interest in debugging at run-time. It is therefore not
meaningful to set trace and break points for Knowledge
Sources themselves. Thus selecting a Knowledge Source
will cause the selected trace and break options to be set for
all of the Rules associated with that Knowledge Source. A
number of options are available here.
Trace and break points can be set on the When Parts of
rules. This means that a trace or break will happen if the
When Part attempts to fire. It should be noted that this will
happen before the test for the When Part is made.
Trace and break points can be set on the If Parts of rules.
These are encountered when the When Part of the rule has
evaluated to non-nil. The trace or break is executed before
the If Part test is made.
Trace and break points can be set on the Select Parts of
rules. These are encountered when the If Part of the rule has
evaluated to non-nil. The trace or break is executed before
the Select Part is evaluated.
Trace and break points can be set on the Action parts of
rules. This is encountered after the When Part and the If Part
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have both evaluated to non-nil. The trace or break is exe-
cuted before any action in the Action Part has happened.
It is possible to trace the failure of the If Parts and When
Parts of rules. It is often useful, when debugging Models,
to find out why a rule did not fire. To this end the Compiler
transforms the expressions which make up the conditions for
a rule so that all of the operands for top level And expres-
sions are separated out. Thus, at least conceptually, "A and
B and (C or D)" is transformed into [A B [or C D]. From
,this point the Compiler generates code which causes these
conditions to be executed in sequence, with suitable short
circuit evaluation in the event of a failure of one of the
operands. From the trace and break menu it is possible to
cause a trace or break point to be executed in the event of a
condition failing after a given clause. Thus if one suspected
that the clause [or C D] was not working correctly a trace or
break could be put on this rule which would be executed if
the expression failed on or after clause three, the one in
question. Setting this option to 0 will always give a
trace/breakpoint when the condition fails.
One of the things that can go wrong with rules is the ex-
pressions for the definition parts might have bugs. In the
event of breaking in a rule it is not too easy to get the values
of the Definitions. A facility has been provided so that the
Definitions for a given rule can be forced to be evaluated and
printed out. These can be forced and printed out when the
When Part fires, when the If Part Tor when the Action Part,
the Otherwise Part or the Timeout.Part fires.
It should be noted that the default configuration for this
menu causes a trace point to be set on the Action Part of all
rules.

Middle This button is much like the middle button for the Class
Monitor Pane. This causes the the rule or Knowledge
Source clicked on to be inspected in the inspector.

Meta-Middle The internal structure of the item on which you clicked is
displayed in the Lisp pane on the right.

Right Pressing this button will cause a menu to appear, which al-
lows the user to set whether the rule or Knowledge Source
in question is active or not. If a Knowledge Source is se-
lected then it is equivalent to selecting every rule in the
Knowledge Source with the same value.

4.3.8. The Graphics Pane

This pane is used to display Graphics produce by the user's model. If the Graphics sub-
system is not loaded this pane will not be configured into the Poligon control frame. For
information on the use of the Graphics subsystem the user is encouraged to read its associ-
ated documentation.
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A. A simple way to make a Poligon model

This section describes briefly a simple set of actions, which will allow a new user to make
a Poligon model.

Type in the Class Declarations into a file called Classes.Poligon.

This file should have a Mode Line (the top line in the file) which specifies the following:

;;;-*-Mode:Poligon; Package:Poligon-User; Base:1O.-*-

This Mode Line could, if required, contain a font specification.

Type any functions in a file called Functions.Poligon. This should also have the Mode
Line specified above, if the functions are written in Poligon, or it should be of type Lisp
with the appropriate Mode Line if it is in Lisp.

Type in the rules into a file called Rules.Poligon. This file should have a Mode Line like the
one specified above.

Compile and load the Class Declarations through the Poligon Compiler, if appropriate, and
the Common Lisp compiler. This can be done most easily by the use of the Zmacs com-
mand Compile and Load File.

Compile and load the functions. This should be done as for the classes mentioned above.
Compile and load the rule base. This should be done as for the functions and Class
Declarations mentioned above.

You should now be ready to execute your model so you should type:

(Run-Poligon) ;;; Just run in the serial mode for now.

and then hit the Run button.
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B. Some Example Functions written in L100 or Poligon

The standard example of "Factorial"

Define Factorial (a-number : Integer)
Documentation

"This function computes the factorial of"&
"a number"

If a-number = 1 Then 1
Else a-number * Factorial(a-number - 1)
EndIf

EndDefine

This example shows the use of sundry infix Operators, a type denotation for the argument
and extended Strings for the documentation String.

A function to construct a new List from head and tail components that it calculates.

Define Make-a-new-list
Documentation "This function makes a new list"
let the-head -a-function-to-determine-the-head()

&let the-tail, -a-function-to-determine-the-tail ()-
in
the-head = the-tail

EndLet
EndDefine

This example shows the use of the Let form, the application of parameterless functions and
the definition of a parameterless function. An empty Parameter List could have been pro-
vided before the documentation String.

A function that takes a List of Lists and returns a sorted List of Lists, sorted on the sum of
the first and second elements of each List.

Define Sort-a-list-of-lists (a-list-of-lists)
Sort (a-list-of-lists,

X (sublist-l, sublist-2)

Documentation "Compare two lists"
sublist-l.First + sublist-l.Second

< sublist-2.First + sublist-2.Second
End%)

EndDefine

This function shows the definition of a function without a documentation String and a
Lambda expression taking two arguments with a documentation String. The postfix func-
tion application Operator "" is used to extract the elements from the sublists.

A procedure that assigns 42 to a global vadable:

Variable Count <- nil

Define An-updater ()
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Documentat ion
"This procedure updates the value of the global "&
"variable 'Count' ."
42 -4 Count

EndDefine

This procedure shows the declaration of a global variable, which is initialized to nil, an ex-
tended documentation String and the use of the assignment Operator.

A function to construct a List with two variable components, passed as arguments and a
number of constant components. The first argument is inserted into the List as an element.
The second is expected to be a List, which is appended into the List.

Define Make-up-a-mixed-list (Component-l, Component-2)
[1 2 3 TComponent-l 4 5 6 IComponent-2 7 8 9 10)

EndDefine
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C. An Example Poligon Model

This appendix contains an example Poligon model. First the model will be explained in
small chunks and then a complete listing will be given.

The model itself is, of course, trivial but shows some of the features of the language. It
concerns a farm, where there are workers, presumably with binoculars and radios, report-
ing on the locations of animals. The models contains an extensive set of Class Declarations
in order, to show how the Blackboard might be structured for such a problem, a full ex-
ample of the Data Input component definition to handle reports of cattle and sheep and a
Knowledge Source with one rule, that deals with the input.from the observers on the farm.

C. 1 An Example Model explained in pieces

The model being described here must reside in two files. The first one contains definitions
of data Structures, in this case only one. The second contains the remainder of the model.
This is because of the "declare before use" requirements of Poligon, which requires that
data Structure definitions must be both compiled and loaded before the functions that they
define can be used.

C.1.1 The Data Structures File

This section contains the specification of the data Structure mentioned in this model. This
data Structure is not used to any significant degree in the example model but is shown here
both to show how such a definition might be made and to stress the requirement that these
declarations be in a separate file. The code is as follows.

;;; -*- Mode:Poligon; Package:Poligon-User; Base:10

Structure Coordinate_pair Fields xcoord, ycoord

This example shows the Mode Line used in the file and the definition of a data Structure
type called Coordinate pair, which has two component fields called x coord and ycoord.
The result of this is that access functions called x coord and y coord will be defined,
which can extract the values of the relevant fields,a Structure creating function called
MakeCoordinate pair (&Key x_.coord y-coord) and a Structure type predicate called
Is_a_Coordinate pair.

C.1.2 The Class Declarations for the Example Model

This section shows the Class Declarations used by the example model. The world seen by
the model is seen as being made up a number of broad categories of objects, which are
specialized. For instance, all animals on the farm are thought of as belonging to the class
Farmyard-Animais. From this class they inherit the attributes Weight, Colour, Serial-
Number and Position. No animals of the class Farmyard-Animals are ever created. This
class is used as an Abstract Superclass in order to define more specialized forms of animal.

;;; -*- Mode:Poligon; Package:Poligon-User; Base:l0 *-

Class Definitions For Model "My Farm-Yard Model"
Class Farmyard-Animals

Fields : Weight
Colour
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Serial-Number
Position

The another major form of object as seen by the model is a Sighting. This is a report from
a farm worker concerning the location of one of the animals. The class Sighting is also an
Abstract Superclass, since all sightings will be of more specialized Classes of sighting,
which will be assumed to contain information about the sort-of animal seen. However all
sightings have the common attributes of Colour, Serial-Number which is painted on the
side of the animal, and Position, which will be a map reference of the type
Coordinatepair.

Class Sighting
Fields : Colour

Serial-Number
Position

The animals seen are not just individual animals wandering about, they are always mem-
bers of some larger. collection; flocks in the case of sheep and herds in the case of cattle.
The general characteristics of these entities are represented on the Blackboard by the
Abstract Superclass Collection. This Superclass confers the property General-Location,
the mean position of the animals in that collection on the Instances of its Subclasses.

Class Collection-Of-Things :
Fields : General-Location

Now comes a selection of other class declarations, which specify other characteristics of
animals in which the model writer might be interested. Mammals are defined to have four
legs by default, Birds are defined to have only two and all edible animals are to have at-
tributes that allow the model in some way to reason about the price per pound of their meat
and about wines that might be drunk, whilst the meat is being consumed.

Class Mammals :
Fields Number-of-legs : 4

Class Birds
Fields Number-of-legs : 2

Class Edible-Animals :
Fields : Price-per-pound

Suitable-wines

Now the model will define the animals in which it is really interested; Sheep and Cattle.
Both of these Classes of Nodes are Farmyard-Animals, Edible-Animals and Mammals as
well as being themselves. Sheep have the attribute Thickness-of-wool, which is specific to
Sheep (this farm has neither goats, angora rabbits, guanaco, alpaca nor vicufia) and Cattle
have the attribute Milk-Output (this is a non-breeding dairy farm).

Class Sheep :
Superclasses : Farmyard-Animals, Edible-Animals,

Mammals
Fields,: Thickness-of-wool

Class Cattle :
Superclasses : Farmyard-Animals, Edible-Animals,

Mammals
Fields : Milk-Output
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This completes the definition of the Classes that define the animals on the farm. Next the
Classes of Collection-Of-Things will be defined. Flocks and Herds are both simply
Collections-Of-Things. They have the same attributes but are distinct.

Class Flocks :
Superclasses : Collection-Of-Things

Class Herds :
Superclasses : Collection-Of-Things

Now the Classes of Sighting will be defined. Like Flocks and Herds the different types of
Sighting have the same attributes but are represented as distinct types.

Class Sheep-Sighting :
Superclasses : Sighting

Class Cattle-Sighting
Superclasses : Sighting

Finally the Root class and Input Handler Class, called Input-Handler are defined. These
are simply the minimal forms of the Root and Input Handler definitions.

Class Root
Fields

Class Input-Handler
Metaclasses : Input-Handler-Class-Mixin
Superclasses : Input-Handler-Mixin

C.1.3 Initialisation in the Example Model

Initialisation is very simple in this model. There is none of it. The system requires, how-
ever, that the user states that he has no need of any special Initialisation code. This is done
by the following.

.i.User Defined Initialisation;Initialisation

If the model had a need to open a debug logging file or such like this is where. it would be
done.

C.1.4 The Data Input declaration for the Example Model

The Data Input definition consists of the definition of a function and a procedure. These
decode the input data and put it onto the Blackboard. The input data is assumed to be a list
of the following form.

(Timestamp Record-Type Serial-Number Colour Position-x
Position-y)

Where Timestamp is an integer denoting the time in the user's units, Record-Type is a
:Keyword denoting the type of sighting (sheep or cow), Serial-Number is sorne represen-
tation of the serial number of the animal, Colour is some representation of the colour of the
animal and Position-x and Position-y are numbers denoting the X and Y coordinates of the
sighted animal.

A function must be defined which extracts the timestamp from the signal data. This func-
tion must be called Time-of-Input-Record and, for this model is defined below.
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Define Time-of-Input-Record (Record)
Record.The-First

EndDefine

Next the model must define the way in which the signal data is to be put onto the
Blackboard. This is done in the procedure, which the model must define, called Input-
Procedure. This procedure is defined below.

Define Input-Procedure
(Record, Timestamp, The-Input-Handler)

Ignore(Timestamp, The-Input-Handler)0
Case Record.The-Second Of
Choice :Sheep :

New Instance of Sheep-Sighting
Initialisation :
Serial-Number - Record.The-Third
Colour - Record.The-Fourth
Position <-MakeCoordinate_pair

(:xcoord , Record-The-Fifth,
:y-coord , Record.The-Sixth)

Choice :Cow :
New Instance of Cattle-Sighting

Initialisation :
Serial-Number - Record.The-Third
Colour - Record.The-Fourth
Position i-Make Coordinate_pair

(:xcoord , Recbrd.The-Fifth,
:y_coord , Record.The-Sixth)

Otherwise : Ferror(nil, "Illegal input record type.")
EndCase

EndDefine

As can easily be seen, this procedure cases on the record type and creates an Instance of the
class Sheep-Sighting, when a sheep has been seen and an Instance of the class Cattle-
Sighting when a cow has been seen.

C.1.5 Application Dependent Functions in the Example Model

In this model there will be the need to determine whether one Node is near to another. For
instance, it is necessary to determine when a sheep is near to a flock, so a criterion for this
nearness is defined here by the predicate Is-Near. This is true if the coordinates supplied to
it are "near to one another".

Constant DistanceTolerance a 100

Define within-tolerance (distance_l, distance_2)
Documentation
"Is non-nil if the two distances are within a defined
tolerance"
Abs(distance_1 - distance_2) < DistanceTolerance

EndDefine

Define Is-Near (coordinates_l, coordinates_2)
Documentation
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"Takes two coordinates and is non-nil if they are near
one another"

within-tolerance (coordinates_1 x_coord,
coordinates_2 •x_coord)

And within-tolerance (coordinates_ley_coord,
coordinates_2•y_coord)

EndDefine

C.1.6 The Knowledge Source in the Example Model

This example model has only one Knowledge Source. A real model would, of course,
have more but this one should serve to explain how the language is used to achieve the
goals of the model writer.

The Knowledge Source begins with the Knowledge Source declaration itself and
Knowledge Source level Definitions. In this case the Knowledge Source, which is being
defined is called Correlate-Sightings-With-Existing-Animals and makes one Knowledge
Source level Definition; Sheep-with-the-same-number.

Knowledge Source :
Correlate-Sightings-With-Existing-Animals

Definitions : Sheep-with-the-same-number-
Subset Of Sheep For Which

Element .Serial-Number
= The-Serial-Number

In this case the Definition of the name Sheep-with-the-same-number would be seen in all
rules in this Knowledge Source. The value of Sheep-with-the-same-number is a Bag of all
of the Subsystems of the Node Sheep (in fact the class of Sheep) that has a Latest value of
its Serial-Number Field equal to the serial number denoted by The-Serial-Number. The
latter is the special identifier denoting the name of the Field upon which the rule shown in
Section C. 1.7 hangs.

C.1.7 The Rule in the Example Model

The example model has only one rule. This rule, however, does quite a lot. It fires when
new Sheep-Sightings are created and their Serial-Number Fields are set.

Rule : Correlate-Sheep-Sightings-With-Existing-Sheep
Class Sheep-Sighting
Field Serial-Number

The rule is called Correlate-Sheep-Sightings-With-Existing-Sheep, is associated with every
Instance of the class Sheep-Sighting and hangs on the Field called "Serial-Number".
Within the rule the names The-Sheep-Sighting and The-Serial-Number will represent the
Node which has had an event on its Serial-Number Field and the new value in the Field
Serial-Number on that Node respectively. The name The-Serial-Number is used by the
Definition made in the Knowledge Source header in Section C.1.6.

This rule itself comes in four main parts; the Rule Header shown above, the Condition
Part, the Action Part and the Otherwise Part.

Having found a new Sheep-Sighting Instance the rule fires its Action Part if there is already
a sheep Instance with the same serial number. This is taken to be a new sighting of the
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same sheep. If there is no sheep with the same serial number then the Otherwise Part fires,

creating a new sheep Instance for the sighting.

C.1.8 The Condition Part of the Rule in the Example Model

The Condition Part of the example rule has no test in its When Part. This means that there
is nothing more that can be deduced about whether the rule should be allowed to fire or not
without looking ,at Nodes other than the Sheep-Sighting, which caused the rule to fire. The
If Part will be true if there are any sheep with the same serial number as the serial number
of the sheep sighting. The sheep with the same serial number are held in Sheep-with-the-
same-number, the bag defined in the Definitions in Section C.1.6. It is assumed by this
model that there will only ever be one sheep with the same serial number. Clearly a more
sophisticated model would try to cope with the ambiguity caused by having a number of
sheep with which the sighting correlated.

Condition Part
When : t
If : Sheep-with-the-same-number-

Number-of-Elements t 0

C.1.9 The Action Part of the Rule in the Example Model

If the Condition Part of the example model is true then it is known that there is already an
Instance of the class sheep, with which the iighting has been correlated. The rule must
now update the position of the sheep on the basis of the new sighting. Because it is known
that this sighting Node has now been finished with, since all information will have been
extracted from it that is needed it can be Recycled. However in order to be able to Recycle
it in Parallel with the Update to the sheep Node, which is to have the new position, the
value from the sighting's position is read before either of these side effects can happen.
This is done by Forcing a Definition, which reads the value of this Field. Once this has
been done the Update to the sheep Node, which is one of the elements in the Bag denoted
by Sheep-with-the-same-number defined at the Knowledge Source level in Section C. 1.6
can happen. In this case the Position Field of the sheep Node is Updated with the Modify
operator so that a record is kept of all of the places that this sheep has been. In Parallel
with this the Sheep-Sighting Node is Recycled.

Action Part :
Definitions

Position-of-the-sighting
The-Sheep-Sight ing •Posit ion

Force : Position-of-the-sighting
Changes :

Change Type Update
Updated Node

Sheep-with-the-same-number. An-Element
Updated Fields :

Position <- Position-of-the-sighting
Changes :

Change Type Recycle
Updated Node The-Sheep-Sighting
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C. 1. 10 The Otherwise Part of the Rule in the Example Model

The Otherwise Part of the example rule is invoked if there is a new Sheep-Sighting, which
does not match with any existing sheep. To account for this sighting a new Instance of the
class Sheep is to be created. Sheep are always associated with flocks so the new sheep
must have as its "parent" flock - the flock that it is near to, or failing that a new flock.

The Otherwise Part of the example rule makes a number of Definitions. These are as fol-
lows.

Position-of-sighting The value of the Position Field of the sighting. This
is forced in order to allow the Recycling of the sighting in
the same way that it is in Section C. 1.9.

Colour-of-the-sighting The value of the Colour Field of the sighting. This is
forced in order to allow the Recycling of the sighting in the
same way that the Position Field is in Section C.1.9.

Serial-number-of-the-sighting The value of the Serial-number Field of the
sighting. This is forced in order to allow the Recycling of
the sighting in the same way that the Position Field is in
Section C. 1.9.

Flocks-which-match-new-sheep A Bag containing all of the flocks
which are near the sighting (satisfy the Is-Near predicate de-
fined in Section C.1.5).

Flock-For-New-Sheep If there is a flock in the Flocks-which-match-new-
sheep Bag then that flock (it is assumed that only one flock
matched this test). If there is no matching flock then a new
Instance of the flock class, whose general position is the
same as the position of the sighting.

New-Sheep The new Instance the class Sheep, whose Supersystems are
the Node, which represents the class Sheep and the flock of
which this sheep is to be a member. The Fields of this Node
are initialized to have the values of the Fields in the sighting.

The code for the Otherwise Part is as follows.

Otherwise Part
Definitions

Position-of-sighting a
The-Sheep-Sighting •Posit ion

Colour-of-the-sighting -
The-Sheep-Sighting. Colour

Serial-number-of-the-sighting
The-Sheep-Sighting •Serial-Number

Flocks-which-match-new-sheep -
Subset of Flocks Which Satisfies

X(a-flock)
is-near (The-Sheep-Sighting.Position,

a-flock. General-Locat ion)
EndX

Flock-For-New-Sheep
If Flocks-which-match-new-sheep.

Number-of-Elements = 0
Then New Instance of Flocks
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Initialisation
General-Location
Position-of-sighting

Else Flocks-which-match-new-sheep.
An-Element

EndIf
New-Sheep
New Instance of Sheep
Subsystem Of : Flock-For-New-Sheep, Sheep
Initialisation :
Serial-Number 4-
Serial-number-of-the-sighting

Colour - Colour-of-the-sighting
Position <- Position-of-sighting

Force : Position-of-sighting, New-Sheep
Changes :

Change Type : Recycle
Updated Node : The-Sheep-Sighting

C.2 A Complete Listing of the Example Model

The following is a complete listing of the example model explained in detail in Section C. 1.

;;; -*- Mode:Poligon; Package:Poligon-User; Base:10 -*-
Structure Coordinate-pair Fields xcoord, y-coord

;;; -*- Mode:Poligon; Package:Poligon-User; Base:10 -*-
Class Definitions For Model "My Farm-Yard Model"

Class Farmyard-Animals
Fields : Weight

Colour
Serial-Number
Position

Class Sighting :
Fields : Colour

Serial-Number
Position

Class Collection-Of-Things
Fields : General-Location

Class Mammals :
Fields : Number-of-legs : 4

Class Birds :
Fields : Number-of-legs : 2

Class Edible-Animals :
Fields Price-per-pound

Suitable-wines
Class Sheep

Superclasses : Farmyard-Animals, Edible-Animals,
Mammals

Fields : Thickness-of-wool
Class Cattle :

Superclasses : Farmyard-Animals, Edible-Animals,
Mammals

Fields : Milk-Output
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Class Flocks
Superclasses : Collection-Of-Things

Class Herds :
Superclasses : Collection-Of-Things

Class Sheep-Sighting
Superclasses : Sighting

Class Cattle-Sighting :
Superclasses : Sighting

Class Root :
Fields :

Class Input-Handler
Metaclasses : Input-Handler-Class-Mixin
Superclasses : Input-Handler-Mixin

Initialisation :

Define Time-of-Input-Record (Record)
Record.The-First

EndDefine

Define Input-Procedure
(Record, Timestamp, The-Input-Handler)

Ignore(Timestamp, The-Input-Handler)0
Case Record*The-Second Of
Choice :Sheep :

New Instance of Sheep-Sighting
Initialisation :
Serial-Number - Record*The-Third
Colour - Record*The-Fourth
Position * MakeCoordinatepair

(:x coord , Record*The-Fifth,
:y-coord , Record.The-Sixth)

Choice :Cow
New Instance of Cattle-Sighting

Initialisation :
Serial-Number <- Record*The-Third
Colour - Record.The-Fourth
Position - MakeCoordinate_pair

(:x coord , Record.The-Fifth,
:y coord , Record.The-Sixth)

Otherwise : Ferror(nil, "Illegal input record type.")
EndCase

EndDefine

Constant DistanceTolerance M-100

Define within-tolerance (distance_l, distance_2)
Documentation
"Is non-nil if the two distances are within a defined
tolerance"
Abs(distance_1 - distance_2) < DistanceTolerance

EndDefine

Define Is-Near (coordinates_1, coordinates_2)
Documentation
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"Takes two coordinates and is non-nil if they are near
one another"

within-tolerance (coordinates_1-x_coord,
coordinates 2'x_coord)

And within-tolerance (coordinatesly_coord,
coordinates_2'y_coord)

EndDefine

Knowledge Source
Correlate-Sightings-With-Existing-Animals

Definitions : Sheep-with-the-same-number
Subset Of Sheep For Which

Element 'Serial-Number =
The-Serial-Number

Rule : Correlate-Sheep-Sightings-With-Existing-Sheep
Class : Sheep-Sighting
Field : Serial-Number

Condition Part
When : t
If Sheep-with-the-same-number'

Number-of-Elements # 0

Action Part :
Definitions

Position-of-the-sighting
The-Sheep-Sighting.Position

Force : Position-of-the-sighting
Changes :

Change Type Update
Updated Node

Sheep-with-the-same-number'An-Element
Updated Fields :

Position <- Position-of-the-sighting
Changes :

Change Type Recycle
Updated Node The-Sheep-Sighting

Otherwise Part
Definitions

Position-of-sighting
The-Sheep-Sighting.Position

Colour-of-the-sighting
The-Sheep-Sighting.Colour

Serial-number-of-the-sighting
The-Sheep-Sighting'Serial-Number

Flocks-which-match-new-sheep
Subset of Flocks Which Satisfies

X(a-flock)
is-near(The-Sheep-Sighting'Position,

a-flock'General-Location)
EndX

Flock-For-New-Sheep
If Flocks-which-match-new-sheep'

Number-of-Elements = 0
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Then New Instance of Flocks
Initialisation :
General-Location,<-

Position-of-sighting
Else Flocks-which-match-new-sheep*An-Element
EndIf

New-Sheep
New Instance of Sheep

Subsystem Of : Flock-For-New-Sheep, Sheep
Initialisation :

Serial-Number <-
Serial-number-of-the-sighting

Colour <- Colour-of-the-sighting
Position +- Position-of-sighting

Force : Position-of-sighting, New-Sheep
Changes :

Change Type Recycle
Updated Node The-Sheep-Sighting
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D. How to load the L100 system and how to start it up

The ,100 language is loaded by the command:

(Make-system 'L100 :Silent :Noconfirm :Nowarn)

This gives access to the basic ,100 language and the L100 compiler. The L100 language is
loaded automatically when Poligon is loaded. This is shown, therefore, mainly for reasons
of completeness.

The user need only know about three procedures and functions which provide access to the
compiler. These are as follows:

Parse (file_name, languagename) Given a filename and a :Keyword de-
noting the name of the language to be used by the compiler
the compiler parses the contents of the file and generates
suitable compiled code. This code is put into a file of the
same name but with the file type "Lisp". Once the output file
has been written out the file is loaded into Zmacs for you.
The value of a call to this function is a record of type
Code structure. This code structure can normally be ig-
nored-but it can be of significance if you want to do incre-
mental compilation and yet carry forward some compiler
context.

Parse inContext(filename, a code structure, language) This
procedure isjust liFe Parse only it allows the user to pass a
code structure to it as an argument. It is by this means that
the user can achieve modular compilation.

Parse a list (alist, old code, language) This function takes a List of
tokens, a code structure and a: Keyword denoting the name
of the language and parses the List in the context of the code
structure. The List can be a Lazy List.

More documentation for these can be found in the ,100 source code, which is extensively
documented.

Once the compilation process has happened you then have to compile the Lisp code for
yourself unless the compilation is being done inside Zmacs or by the use of Make-sys-
tem/DefSystem.
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E. Data Structures and Types

A number of new Types have been defined in Poligon. These and the functions used to
manipulate them are described in this section.

The new data structures supported by Poligon are Bags, Sets and Lazy Lists. Most of the
same operations apply to Bags, Sets, normal lists and Lazy Lists and these are listed in
Section E.6, a joint section below. Those functions, which are exclusive to a given type
will be listed and explained here. All of the above data types are types of Collection.

E.1 Types defined in Poligon

The following types are defined in Poligon and may either be used by the programmer or
will be seen by the programmer during debugging.

Collection The type of any collection. This includes Nil, lists, Bags,
Sets and Lazy Lists and any system defined internal
Collection data types. The operations on Collections are
shown below.

Functional-Value The type to which all functions and functional objects be-
long. This includes Poligon's internal representation of
functional objects.

Future The type that denotes promises for values.
Link-Cell The type of one of the ends of a Link.
Multi-Future The type that denotes a promise for a Collection of values.
Multiple-Values The type used to denote multiple values returned by a func-

tion or Definition.
Non-Nil-Collection This type is just like the type Collection only it ex-

cludes Nil.
Ordered-Collection This type is any type of Collection which has a

meaningful order. Lists are Ordered Collections.
Quoted-Form This is the type of anything which is represented internally

by the form (Quote <form>).
Type-Specifier This is the type of any legal type specifier. Examples of type

specifiers might be Cons, Bag and Integer.

E.2 Functions for the manipulation of types

The following functions and operators are defined in Poligon in order to manipulate types.
These are defined because of the fact that the type of a value that the user is manipulating
can vary depending on whether it is being seen by a strict operator or not.

value Is-Of-Type type -> Tif value appears to be of type type when
seen by a non-strict operator.

value Is-Strictly-Of-Type type -> T if value appears to be of type type
when seen by a strict operator.

Non-Strict-Type-Of(value) -> The type of value when it is seen by non-
strict operators.

Strict-Type-Of(value) -> The type of value when it is seen by strict op-
erators.
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E.3 Lazy Lists

Is-a-lazy-list(a-list) -> T if a-list is either a list or a Lazy List, otherwise nil.
The Strict-Type-Of a Lazy List will be Cons.

Is-a-lazy-list-tail(a-tail) -> T if the value is the Tail of a Lazy List, i.e. is
that data structure, which is used by Tail to compute more
elements, otherwise nil.

Make-into-lazy-list(a-function, a-starting-element) -> A Lazy List,
whose Head is a-starting-value and whose successive tails
will be evaluated by calling a function with the preceding
value. Thus a-starting-value will be used to calculate the
second element of the list and the second will be used to
evaluate the third and so on. a-function will be called
with:Get-Next-Value as its first argument and the last value
as its second argument. This is the case so that, if neces-
sary, a-function can be an object, which will be sent a :Get-
Next-Value message with the preceding value as its argu-
ment.

Rest(a-list) [Cdr] -> The Tail of a list. This will not cause the evaluation
of the Tail of a Lazy List. This should be used with caution.
The Rest of a Lazy List Tail will give an error and calls to
Tail for a Lazy List Tail can can only be made to the Cons
cell, which has the Lazy List Tail as its CDR, since the CAR
is used as the starting value.

E.4 Bags

Bag(&Rest, elements) -> Creates a Bag containing elements.
Is-a-Bag(a-bag) -> T if a Bag is a Bag, otherwise nil. The Strict-Type-

Of of a Bag is Bag.

E.5 Sets

Set(&Rest, elements) -> Creates a Set containing elements.
Is-a-Set(a-set) -> T if a Set is a Set, otherwise nil. The Strict-Type-Of of a Set

is Set.

E.6 Collections: Bags, Sets, Lists and Lazy Lists

Ali-Elements(a-collection) -> a list containing all of the elements in the
Collection. This value contains only determined elements
and the function will wait until all of the elements have been
determined.

An-Element(a-collection) -> Values denoting an element in the Collection
and the second denoting the Collection left over, i.e. a
Collection with that element not present. This function al-
ways returns Determined Elements and will wait until a
Determined Element is free. If the Collection is empty then
the values :Empty and either :List or a :Keyword denoting
the type of the collection, for instance :Bag will be returned.

Associate(item, a-collection, &Key (Key #'Head), (Result
#'Identity)) -> Result(The first element found in a-
collection for which item = Key(the element in the collec-
tion)). If there are no items that match then nil.
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collection As-Type type -> A collection, whose elements are those in
Collection but whose type is Type. If Type is a Collection
then a collection is returned whose type is that of Type.

collection Cardinality-Exceeds cardinality -> T if the cardinality of
the collection exceeds Cardinality, otherwise Nil.

a-collection Collection-Difference another-collection -> A Collection,
which has as its elements all of those elements that are in
both a-collection that are not in another-collection. The type
of the value of this function is the same as that of a-collec-
tion.

a-collection Collection-Intersection another-collection -> A
Collection, which has as its elements all of those elements
that are in both a-collection and another-collection. The type
of the value of this function is the same as that of a-collec-
tion.

Collection-Is-Empty(collection) -> T if the collection has no elements,
otherwise Nil.

Collection-Is-Not-Empty(collection) -> Nil if the collection has no
elements, otherwise T.

a-collection Collection-Union another-collection -> A Collection,
which has as its elements all of the elements that are in a-
collection and all of the elements in another-collection. The
type of the value of this function is the same as that of a-col-
lection.

Copy-Collection (collection) -> A new collection with exactly the same shape
as Collection but which is distinct.

Current-Number-Of-Elements(a.collection) -> The number of
Determined Elements in a Collection.

Element-of(n, a-collection) -> an element from the Collection by applying
Head to the result of applying Tail to it n-I times. This is the
generic equivalent of Nth.

Fold(a-function, a-collection, initial-value, &Rest, any-other-pa-
rameters) -> Takes a-function and folds it left as-
sociatively over a-collection, using initial-value as the first
argument to the first call and the Head as the second. Any
other arguments supplied follow these.

Fold-Right(a-function, a-collection, last-value, &Rest, any-other-pa-
rameters) -> Takes a-function and folds it right as-
sociatively over a-collection, using last-value as the second
argument to the first call and the last element in the collection
as the first. Any other arguments supplied follow these.

Get-Property(a-collection, key) -> This is the Collection equivalent of
the Common Lisp function Get. It works for all symbols
and Ordered-Collections, i.e. disembodied property collec-
tions. It should be noted that this function does not have the
restriction that Get has which required it to take a locative for
disembodied property lists. Thus Get-Property(List(:a, 1,
:b, 2), :a) -> 1.

Head(a-collection) -> an element from the Collection. If there are no
Determined Elements in the Collection then it will wait until
there is a Determined Element.

Is-A-Collection(a-collection) -> T if a-collection is a Collection,
otherwise Nil.
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Is-An-Ordered-Collection(a-collection) -> Tifa-collection is-an ordered
Collection such as a list, otherwise Nil.

Is-An-UnOrdered-Collection(a-collection) -> T if a-collection is an
unordered Collection such as a Bag, otherwise Nil.

a-member Is-In a-collection -> If a-member is a member of the Collection
then it returns either the Tail of the Collection which has had.
elements extracted from a-collection until a match is found..
This function will wait until elements have been determined
if necessary. If the element is not found then~nil is returned.

a-member Is-Not-In a-collection -> If a-member is a member of the
Collection then it returns Nil, otherwise it returns T.

Join(&Rest Collections) -> This is the Collection equivalent of the
Append function. It takes a number of Collections and re-
turns a new composite collection containing all of the ele-
ments of the original collections.

Make-a-Collection-of-Type(collection-or-type, &Optional' (length 0),
(initial-elements nil)) -> Returns a new Collection of
type collection-or-type if collection-or-type is the name of a
type of Collection, or of the type of collection-or-type if col-
lection-or-type is a Collection. The new Collection has
Length initial elements, all of which are initial-elements.

Map-Over-A-Collection(a-function, a-collection, &Rest, any-other-
parameters) -> A Collection denoting the values,
which result from applying a-function to all of the elements
in the Collection, using the element from the Collection as
the first argument to a-function and any-other-parameters
following.

Number-of-Elements(a-collection) -> values denoting the number of ele-
ments in the Collection and a :Keyword denoting the type of
the collection. If the Collection is a Bag then the value is
:Bag is returned. If it is a list ending in nil then the value is
:List. If it is a chain of Conses not ending in nil then the
value is :Lazy-List, if the Tail is a Lazy list Tail or :Cons if it
is not a Lazy List.

Sort-Collection(a-collection, predicate, &Key Key) -> This is just like
the system function Sort only it works for any Ordered-
Collection and returns a sorted copy of the original.

Tail(a-collection) -> a Collection which does not contain the element that
would have been the value of Head(a-collection).

The-Eighth(a-collection) -> A synonym for Element-Of(7, a-collection).
The-Excluded-Subset(a- predicate, a-collection, &Rest other-args) ->

A Collection like the argument but containing only
those elements which fail the application Apply-function(a-
predicate, element, other-args).

The-Fifth(a-collection) -> A synonym for Element-Of(4, a-collection).
The-First(a-collection) -> A synonym for Element-Of(O, a-collection)

and for Head(a-coilection).
The-Fourth(a-collection) -> A synonym for Element-Of(3, a-collection).
The-Last(a-collection) -> Returns the last element of a-collection for

any Ordered-Collection.
The-Ninth (a-collection) -> A synonym for Element-Of(8, a-collection).
The-Second(a-collection) -> A synonym for Element-Of(I, a-collection).
The-Seventh(a-collection) -> A synonym for Element-Of(6, a-collection).
The-Sixth(a-collection) -> A synonym for Element-Of(5, a-collection).
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The-Subset(a-predicate, a-collecion, &Rest other-args) -> A
Collection like the argument but containing only those ele-
ments which satisfy the application Apply-function(a-predi-
cate, element, other-args).

The-Tenth(a-collection) -> A synonym for Element-Of(9, a-collection).
The-Third(a-collection) -> A synonym for Element-Of(2, a-collection).
Uniqueise(a-collection) -> Returns a collection of the same type as a-

collection but which has no duplicate elements.
a-collection With an-element -> a Collection which contains an extra

instance of the value an-element.
a-collection Without a-member -> a Collection which has any instances

of a-member removed.
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F. The L100 Zmacs interface

L100 and languages based on ,100 can be interfaced to Zmacs in a number of ways.
These are described below.

There is an ,100 Zmacs major mode. All L100 code should have L100 has the mode line
attribute, or should use the Zmacs major mode defined for the L100 derivative language. It
should be noted that the features mentioned here will only work correctly if the source file
is in the correct major mode.

The action taken by the Tab Key is redefined. Tab stops are set every four spaces. Zmacs
will tabify backwards down the line so that the line is not full of a mixture of tabs and
spaces. As normal in Zmacs, to get a real Tab character you should type C-Q Tab.

"Edit function definition" options such as M-. and the edit option in the debugger have been
modified so that this will work correctly for L100 source code. Two definitions for func-
tions wiil be found. One will be in the generated code and one will be in the source code.
Thus M-. with a numeric argument will find the required definition.

F.1 Commands Supported within Zmacs

The following commands are supported in such a manner that they will work in an appro-
priate fashion for any buffer or file, which is of any language derived from L100.
Wherever reference is made to the ,100 compiler the user should interpret-this as meaning
the L100 compiler or the L100 derived compiler for that language.

L100 Mode This command will set the major mode of the current buffer
to be LJO0 Mode. Analogous commands are defined for any
LIOO derived languages.

Compile Region This command will cause the current region to be compiled
through the L100 and then through the Common Lisp com-
piler. If a region is marked then this will be compiled. If no
region is marked then Zmacs will compiler the current sec-
tion. Sections are delimited by top level definitions starting
in the first column of a line. This definition will be com-
piled. When the LIO compiler is parsing the source code it
prints it out in Zmacs's typeout window as it goes. This
helps the user to find syntax errors. After this has finished
the Common Lisp compiler will take over.

Parse Region This command is just like Compile Region only the code is
not passed on to the Common Lisp compiler. This com-
mand, therefore, is useful as a syntax check.

Parse and Print Region This command is like Parse Region only after the
L100 compiler has finished parsing the defined region the
generated code is printed out in the Zmacs typeout window.
This command is intended mostly as a debugging aid for
compiler developers.

Parse and Print Buffer This command is like Parse Buffer only after the
L100 compiler has finished parsing the buffer the generated
code is printed out in the Zmacs typeout window. This
command is intended mostly as a debugging aid for compiler
developers.
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Parse into Buffer This command is like Parse and Print Region only instead of
displaying the generated code from the compilation in the
Zmacs typeout window it is ground into a, possibly new,
buffer which the user specifies.

Compile Buffer This command is just like Compile Region only the region
selected is the whole buffer.

Parse Buffer This command is just like Parse Region only the region se-
lected is the whole buffer.

Compile File This command is just like the normal Compile File command
except that it will, when given a file to compile, which has as
its mode the name of an L1O derived language, compile it
through the relevant compiler before compiling it through the
Common Lisp compiler.

Parse File This command is much like Compile File only the file must
be one which has as its mode the name of one of the L100
derived languages. The file is parsed but is not put through
the Common Lisp compiler.

Compile and Load File This command acts just like the system's Compile
and Load File command unless the file in question has the
name of an L100 derived language as its mode. In this case
the file is parsed, the resulting code is compiled by the
Common Lisp compiler and then the binary file is loaded.

Compile Changed Sections This command and all of its related com-
mands, such as Tags Compile Changed Definitions, are
supported in the appropriate manner. Changed definitions in
a buffer, whose mode is LIOO Mode or one of the L100
derived major modes, will be compiled through the relevant
compiler and will then be compiled and loaded by the
Common Lisp compiler.

F.2 Keyboard Commands Supported within Zmacs

Most Zmacs keyboard commands act as they do in Lisp based modes. The following L100
supported commands are of significance.

C-Sh-c This command has the same effect as Compile Region.
Mouse-1-R Compile Region This command has the same effect as

Compile Region.
C-Sh-a This command has a similar effect to that which it has in

Lisp based major modes. In L1O based modes the user
must have the cursor somewhere within the name of the
function in question, as opposed to somewhere within a call
to a function. This is because L1OO based languages support
used defined syntax and function call types. It is therefore
not obvious which function the user might mean in the gen-
eral case.

C-Sh-d This command works in a similar manner to C-Sh-a, except
that it prints the documentation string of the function in
question, as opposed to the arglist.
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G. The Poligon Zmacs Interface

Like any language based on ,100, Poligon is interfaced to Zmacs. There is a Poligon ma-
jor mode, which should be specified in the Mode Line of all Poligon source files. In other
respects the Poligon major mode acts just like the L100 major mode with one major excep-
tion. This is that the Poligon major mode saves context between compilations. This is
done so as to support the incremental compilation of Poligon code, which needs the context
associated with the Class Declarations in order to generate the correct code. For this reason
the first code compiled in the Poligon Compiler within Zmacs must be the Class
Declarations (see Section 3.4). Failure to do this will result in an error stating that the
Class Declarations have not been compiled. From this point on any Knowledge Source,
for instance, can be compiled from within Zmacs.
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H. The L100 Defsystem Interface

The L100 language, and any languages derived from it, are interfaced to the Defsystem
utility. This allows the compilation of non-lisp files in the appropriate manner, taking into
account their compilation and load dependencies.

Files in and L100-1ike language can be included in modules in Defsystem declarations. For
instance you can do any of the following.

(:module a-module ("host :directory;something.LlOO"))

or

(:module a-module
(("host :directory;something.Ll00"
"host :directory.another-directory;something.lisp")))

or

(:rnodule a-module
(("host :directory; something.LlO0"
"host :directory .another-directory; something. lisp"
"host :directory. yet. another-directory; something")))

Clearly, unlike normal Lisp compilations, you can provide a pathname for the intermediate
Lisp file.

To support these changes a number of new general purpose transformations have been im-
plemented. All of these transformations use the source files' mode lines to find the right
compiler, including Lisp where appropriate. These are as follows.

:General-Parse Parse the files in the module.
:General-Parse-Init Parse the files in the module looking after the speci-

fied dependencies like Compile-Load-lnit.
:General-Compile (Possibly) Parse and Compile the files in the module.
:General-Compile-Load The Compile-Load version of :General-Compile.
:General-Compile-Load-Init The :Compile-Load-Init version of :General-

Compile.
:Load-Into-Zmacs Load the files in the module into Zmacs.

For each L100-like language there is a set of transformations specific to that language.
These do not inspect the mode lines in order to find the language for compilation and force
compilation in the language specified. The transformations are analogous to the ones men-
tioned above. For a language called "Foo" they would be as follows.

• :Foo-Parse
" :Foo-Parse-Init
* :Foo-Compile
* :Foo-Compile-Load
• :Foo-Compile-Load-Init
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The package default-option in Defsystem will cause the intermediate lisp files to be gener-.
ated with the new package specified in the mode line. Thus if a file is in L100 mode and in
the TV package it can be compiled for the Foo language and into the Foo package by using
the :Foo-Compile transformation and the package override facility as is shown below.

(defsystem an-example
(:Name "An example system showing some new

transformations.")
(:Package Foo)
(:Pathname-Default "Host:Directory;"
(.:Module module-i

(("Host--2:Directory-2;test-1.Ll00" "test-i")))
(:Module module-2

(("Host-2 :Directory-2;test-2.LIOO"
"Host-2 :Directory-2; test-2 .lisp"
test-2")))

(:Foo-Compile-Load module-l)
(:Foo-Compile-Load-Init

module-2 (module-i) (:Fasload module-i)))
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I. Listeners for L100 based languages

For each language based on L100 there is a flavor of listener window like a Lisp listener
only which evaluates expressions in that language and compiles definitions for that lan-
guage. The flavors are defined by appending "-Listener" to the name of the language and
they are defined in the TV package. Thus there is a flavor of listener called tv:L100-
Listener. Such listeners, by default, evaluate expressions and print their values. If the user
wants to do such things as define functions then the text must be preceded by a colon. The
value of a definition is always nil. A blank line is used to denote the end of input.

An example session typing to such a listener might be as follows :-

[LIO]> 2 + 2 ;;; Evaluate the expression "2+2"4
[LIO]> define a-function(x)

;;; Define a function. This is compiled.
print (x)

enddefine
nil
[LI00]>
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J. The Poligon language grammar

Below is a formal definition of the grammar of Poligon. The textual representation of the
grammar has had the attributes associated with the code generation removed in order to en-
hance its legibility but is in all other respects identical to the real grammar.

Po ligon's Grammar is pretty simple. The Grammar is in a sort of BNF form. Upper case
words denote keywords. :Keywords are used to denote the names of productions and the
names of non-language basic symbols. The latter include :identifier, :number, :bra and :ket
(open and close parenthesis) and :lsq and :rsq (open and close brackets). Optional items
are enclosed in brackets. Alternative items are enclosed in braces and are separated by "v"
signs.

It should be noted that this Grammar has been automatically processed from the real
Grammar used by the system. Thus decisions concerning how the Grammar is distributed
about the productions were made on the basis of ease of code generation and not of legibil-
ity. Equally, some features might appear to be superfluous, for instance the definition of
:elsepart and :nelsepart, which are the same. The code generation components for these
two are distinct and so they are distinguished in the Grammar. It is, however, hoped that
the user will not have to resort to a close scrutiny of the Grammar in order to make use of
the language. The starting production for any attempted compilation in Poligon is called
:Poligon.

:Xexpr :=X :routinebody ENDX
:actionitem :proposition v :execution
:actionitems :actionitem [ :actionitems
:actionpart ACTION PART :colon :definitionpart :optforcing

actionitens :ruleotherwisepart :timeoutpart
:activation ACTIVE :colon :expr
:actualparamlist :=:bra [ :actualparams 3 :ket
:actualparams :=:expr [ :comm'aexprs3
:andbinditemlist :=&BIND :binditems
:andextendedopexpr ::'& :operator :identifier [ :opatI

[:andextendedopexpr
:andletitemlist &LET :letitens
:andstringlist I& :restofstringlist
:appendediten 1 v I? :simnple
:arguments ARGUMENTS :colon :params
:binddecl BIND :binditerns IN :statements ENDBIND
:binditems :ietitem [ :andbinditernlist I
:brackettedexpr :=:bra :expr :ket
:casedecl :=CASE :expr OF :choiceitems [ :otherwisepart 3ENDCASE
:change :=CHANGE TYPE :colon :update v :event v :expect

" :linkchange v :linksubsystem
" :unlirikchange
" :unlinksubsystem
" :recycle v :discard

:choiceitems CHOICE :actualparams :colon :expr [ :choiceitems3
:classdecls CLASS :identifier :colon :metaclasses :superclasses

:poligonfields :printas [ :classdecis3
:classdefinitions :=CLASS DEFINITIONS FOR MODEL :expr

:colon :classdecls
:classupdate :=UPDATED CLASS :fieldsorslotupdates
:colonemptyorexprs :=:colon :erptyorexprs
:colontoplevelstatemennt :=:colon :toplevelstatement
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cornmaexprs :: comma :actualparams
:commaforcedidentifiers :=:comma :forcedidentifiers
:commaformals :=:comma :formalparams
:commaparams :=:comma :params
:conditionpart :=CONDITION PART :colon :optforcing WHEN :colon-

:expr :optforcirig IF :colon :expr
:constdecl :=CONSTANT :identifier Ia _v '== :expr
:definitionbody DEFINITIONS :colon :definitions
:definitionpart [ :definitionbody I
:definitions :multivalues ( :definitions
:defstatement DEFINE :identifier :routinebody ENDDEFINE
:deletion :=DELETE :colon :expr
:discard :=DISCARD UPDATED NODE :colon :expr
:docstring :=DOCUMENTATION :stringlist
:dostatement :=DO :expr
:eager :=EAGER :colon :forcedidentifiers
:elseifparts :=ELSEIF :expr THEN C :statements I C :elseifparts
:elsepart :=ELSE :statements
:elseurilessparts ELSEUNLESS :expr DO ( :statements3
:elseunlessparts
:emptyorexpr EMPTY v :expr
:emptyorexprs EMPTY v :exprs
:evaluateditem ITv '" :simple
:event :=CAUSE EVENTS UPDATED NODE :colon :expr UPDATED :fieldsorslots

:colon :identifiers
:execution :=EXECUTE :colon :statements
:exestatement :=EXECUTE :expr
:expect :=EXPECT RULE :coloni :idenitifier NODE :colon :expr

:fieldorslot :colon :identifier :expectbody
:expectbody :=:expectwhen :expectif :activation

:deletion :timeout :definitionpart
:expectif :=IF :colon :expr
:expectwhen :=WHEN :colon :expr
:expr :simplewithparts ( :opexpr
:exprs :actualparams
:extendedopexpr ::'& :operator :identifier ( :opat I

[:andextendedopexpr]
:fieldnames :identifier :optdefault ( :fieldnames3
:fieldorslot FIELD v SLOT
:fields :=:fieldsorslots :colon ( :fieldnames3
:fieldsorslots :=FIELDS v SLOTS
:fieldsorslotupdates :=:fieldsorslots :coloni :slotdefinitions
:forcedidentifiers :=:identifier C :cormmaforcedidentifiers3
:forcing :=FORCE :colon :forcedidentifiers
:formalparam :identifier [ :types I
:formalparams :formalparam ( :commaformals
:forwhich :=FOR WHICH ELEMENT :operator :identifier :operator :expr
:identifiers :=:idenitifier ( :identifiers ]
:ifexpr :=IF :expr THEN ( :statements 3C:elseifparts 3C:elsepart3

ENDIF
:initialisation :=:iflits :colon :statemenlts
:inits :=INITIALISATION v INITIALIZATION
:knowledgesource :=KNOWLEDGE SOURCE :coloni :identifier

:definitionpart [ :rules3
:1ambdaexpr :=LAMBDA :routinebody ENDLAMBDA
:letdecl LET :letitems IN :statemenits ENDLET
:letitem :identifier I= v '== :expr
:letitems :letitem [ :andletitemlist
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:linkchange :=LINK :expr TO :expr LINK :colon :expr CLASS
:colon :expr UPDATED :fieldsorslots
colon :slotdefinitions

:linksubsystem :=LINK SUBSYSTEM :expr TO :expr
:list :=:LSQ ( :listvalues ] :RSQ
:listvalue :appendeditem v :normallistitems
:listvalues :listvalue [ :listvalues)
:metaclasses METACLASSES :colon :pararns
:multiletdecl MULTIPLELET :multivalues IN :statements ENDMULTIPLELET
:multivalues :params I-= V '== :expr
:namecolonvalues :=:identifier :colon :emptyorexpr NOEVENT

(:commna I [ :namecolonvaluesJ
:nelsepart :=ELSE :statements
:newinstance :=NEW INSTANCE OF :expr :unlesscreate

classupdate :supersystens
slotinitialisations

:normallhstitem :evaluateditem v :value v :percenteditem
:norrnallistitems :normallistitem [ :normallistitens
:opat :=AT :simnple
:opexpr :=:simpleopexpr v :extendedopexpr :opsideeffects
:opsideeffects :=:colon :unlesscreate :updatedfields
:optdefault :colonemptyorexprs
:optforcing :eager :forcing
:otherwisepart :=OTHERWISE :colon :expr
:parallelisation IN PARALLEL FOR EACH :identifier IN :expr

:definitionpart :optforcing :change
:parallelletdecl PARALLELLET :letitens WHEN :expr IN

statements ENDPARALLELLET
:paramlist :bra [ :formalparams ) :ket
:params :=:identifier ( :comxnaparams
:percenteditem ::'% :actualparans t%

:poligon :=:Start Tof_-File :toplevelstaternents :End -of_-File
:poligonfieldnames :=:identifier :optdefault C :slotspecifiers

(:poligonfieldnames I
:poligonfields :fieldsorslots :colon ( :poligonfieldnames
:poligonletdecl LET :letitems IN :statemnents ENDLET
:printas :=DISPLAY AS :colon :actualparams
:procedureparts :=:actualparamlist ( :procedurepartsI
:proposeitem :parallelisation v :change
:proposeitems :proposeitem ( :proposeitems I
:proposition CHANGES :colon :definitionpart :proposeitems
:recycle :=RECYCLE UPDATED NODE :colon :expr
:restofstringlist :=:string C:andstringlist
:routinebody ::C :pararnlist I:docstring C :statements
:rule :=RULE :colon :identifier :arguments v :ruleheader

.definitionpart :conditionpart :selectactionpart V :actionpart
:ruleheader :=CLASS :colon :identifier :fieldorslot :colon :identifier
:ruleotherwisepart :=OTHERWISE PART :colon :definitionpart

:optforcing :actionitems
:rules :=:rule ( :rules I
:selectactionpart :=:optforcing SELECT :colon :expr ACTION PART

:colon :definitionpart :optforcing
tagedcomponents :ruleotherwisepart
tixneoutpart

:semistatements :: '0 1 :statements
:simple :=:value v :poligonletdecl v :ifexpr v :brackettedexpr

" :unlessexpr v :Xexpr v :larnbdaexpr v :multiletdecl
" :casedecl v :binddecl
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:simpleopexpr :=:operator :expr [ :opat
:sirplewithparts :simple ( :procedureparts
:slotdefinition :idenitifier :operator NOEVENT

:slotdefinitionlist v :emptyorexprs
:slotdefinitionlist :: & :expr
:slotdefinitions :=:slotdefinition ( :slotdefinitions
:slotinitialisations :=:inits :colon :slotdefinitions
:slotspecifiers :=:specifierkeyword :colon :expr ( :slotspecifiers
:specifierkeyword :=INSERTIF v REMOVEIF v MODIFYWITH

v INDEXEDBY v SORTEDBY v KEYEDBY
:statements :expr ( :semistatements
:stringlist :string ( :andstringlist
:structure STRUCTURE :identifier FIELDS :params
:subset :=SUBSET OF :expr :forwhich v :whichsatisfies
:superclasses SUPERCLASSES :colon :params
:supersystems SUBSYSTEM OF :colon :exprs
:tagedcomponents :=:expr :colon :actionitems ( :tagedcomnponentsI
.:timeout :=TIMEOUT :colon :expr
:timeoutpart TIMEOUT PART :colon :definitionpart :optforcing

act ioriitems
:toplevelexpr :Start-ofFile :expr v :colontoplevelstatememnt

:End of file
:toplevelstatement :=:defstatement v :vardecl v :constdecl

" :krowledgesource
" :classdefinitions
" :structure v :initialisation
" :dostatemeit v :exestatement

:toplevelstatements :=:toplevelstatement [ :toplevelstatenents
:types :=:coloni :identifier ( :types ]:unlesscreate :=UNLESS

:colon :expr
:unlessexpr :=UNLESS :expr DO ( :statemenits IC:elseunlessparts

[:nelsepart ) ENDUNLESS
:unlirikchange :=UNLINK :expr FROM :expr LINK :colon :expr
:unlinksubsystem :=UNLINK SUBSYSTEM :expr FROM :expr
:update :=UPDATE UPDATED NODE :colon :expr :updatedfields
:updatedfields :=UPDATED :fieldsorslotupdates
:value :Identifier v :Keyword v :number v :Quoteditem

v :Stringlist v :List V :Function -value
v :newinstance v :subset v :parallelletdecl

:value :Identifier v :Keyword v :number v :Quotediten
v :Stringlist v :List V :Function-value

:vardecl :=VARIABLE :identifier '(-- v I<- :expr
:whichsatisfies :=WHICH SATISFIES v FAILS :expr
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K. Poligon Language Keywords

Table K-i shows all of the Poligon language keywords. These words are reserved and
cannot be used as identifiers in user programs.

x Eager If RemoveIf
&Bind Element In Rule

&Let Else IndexedBy Satisfies

Action ElseIf Initialisation Select
Active ElseUnless Initialization Slot

Arguments Empty InsertIf Slots

As EndX Instance SortedBy

At EndBind KeyedBy Source

Bind EndCase Knowledge Structure

Case EndDefine Lambda Subset

Cause Endlf Let Subsystem

Change EndLambda Link Superclasses

Changes EndLet Metaclasses Then

Choice EndMultipleLet Model Timeout

Class EndParallelLet ModifyWith To

Condition EndUnless MultipleLet Type

Constant Events New Unless

Define Execute Node Unlink

Definitions Expect NoEvent Update

Delete Fails Of Updated

Discard Field Otherwise Variable
Display Fields Parallel When

Do For ParallelLet Which

Documentation Force Part

Each From Recycle

Table K-I Poligon Language Keywords
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L. Poligon Language Operators

Tables L-1 and L-2 shows all of the operator symbols predefined in the Poligonlan-
guage and the names of the operations or functions, which they denote.

Operation [Symbol

All-Elements @@___________

All-Elements _____________

An-Element @____________

An-Element
An-Element-Or-Nil @?________

An-Element-Or-Nil e?___________

And And
Append (_4_ _ _ _ _ _

Append <>_________

Are-The-Same
At-Type As-Type
Cardinality-Exceeds Cardinality-Exceeds
Collection-Difference Collection-Difference
Collection-Intersection Collection-Intersection
Collection-Union Collection-Union-
ConsID

Table L-J Poligon Language Operators

4-116



Ist-Empty-Or-Undefined IsN-Empty-Or-Undefined

Is-Not-In Is-Not-In
Is-Not-Undefined Is-Not-Undefined
Is-Of-Type Is-Of -Type
Is-Strictly-Of-Type Is-Strictly-Of-Type
Is-Undefined Is-Undefi ned
Modify
Modify<
Not-Equal %
Not-Equal#
Or Or
Quotient/
Remove-Element -
Remove-Element
Replace-All-Elements
Replace-All-Elements <-
Setf -

Setf -

With With
Without Without

Table L,-2 Poligon Language Operators
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M. Miscellaneous System Defined Functions, Operators,
Macros and Variables

The following functions, macros and variables are defined in Poligon and are of general
use.

Apply-Function(function, &Rest arguments) -> Applies the function
function with arguments arguments as if it was called using
Apply.

Breakpoint(&Optional (value-to-return :Null-Value-From-
Breakpoint), (break-p t), (format-string "Poligon
Breakpoint"), &Rest format-args) -> Executes a
breakpoint when it is called, if Break-p delivers non-nil. If
Break-p is a function then this function is called with Value-
To-Return as its argument. The value of a call to this func-
tion is Value-To-Return, so a breakpoint can be wrapped
around any expression and still be an identity operation.

Call-Function(function, &Rest arguments) -> Calls the function
function with arguments arguments as if it was called using
Funcall.

expression Comment comment-expression The use of this operator
causes explanatory text to be embedded in the generated
code. The function associated with the operator is called
Include-Comment and is expected to be an Identity function
on its first argument. Its second argument is the comment it-
self, which can be any expression, but which is typically a
string. The default "Include-Comment" function throws
away its second argument, but the user can define it to do
anything that he wants with'the comment. This form of
comment is legal anywhere that an expression is legal in the
Poligon language.

'Coerce-To-Object(something) -> Removes all Poligon defined data
structures until a basic object, for instance a flavor instance,
is returned. This is useful in print methods where the true
detail of Poligon's representation might be too complex.
This function is particularly useful, since Coerce-To-
Object(#<Remote Sheep-42>) is the instance Sheep-42.

Current-TimeO -> The time at the time that user clock last ticked before this
function is called in user time units, expressed as an integer.

Dont-Optimise0 A macro, which switches off any compiler optimizations
that the Poligon system may use. This macro can only be
placed at the head of a function definition or just after the In
of a Let or MultipleLet construct. This prevents certain func-
tions, like Is-In and Field Selection Operations from being
open coded. This should result in the model being more in-
telligible when debugging, but it will probably be signifi-
cantly slower.

Floated-Current-Time0 -> The time that this function is called in user
time uflts, expressed as a floating point number.

Halt-Poligono Arrests the process in which the Poligon simulation runs.
Has-Type(something, type) This macro declares that Something is of

type Type. For instance, Has-Type(nodes, list) declares that
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nodes is always of type List. This information can be used
by the compiler in its optimizations. For information on this
topic please see Appendix Q.

Is-Not-N il(something) Is true if Something is not Nil.
Optimise0 A macro, which maximizes the compiler optimizations per-

formed on the function in which it is used. This macro can
only be placed at the head of a function definition or just
after the In of a Let or MultipleLet construct. A significant
feature of this is that Tail Recursion Optimization is turned
on. This is the way in which the user would implement a
Loop in Poligon.

Run-Poligon(& Optional (Parallel-P nil)) Initializes the Poligon system
so that it will start a simulation as soon as the menu option
is selected. If Parallel-P is true then the system will be ini-
tialized in such a way as to prepare is to run in Parallel
mode. This function must be called in order to toggle be-
tween the Serial and Parallel modes.

Selected-Circuit This variable has as its value the name of the currently se-
lected CARE circuit or nil (default). Setting this variable be-
fore the model is loaded will allow the user to select any of
the circuits which he has loaded. If this is not done then the
system will select the most recently loaded circuit for any
simulations which are performed in the Parallel mode.

Returns-Coerced-Result(Function-Name) Declares that Function-Name
returns a result, which is guaranteed not to be a Future or a
Multiple-Values object.

Stop-Poligon(&Optional (No-Statistics nil)) Stops the Poligon
simulation by aborting it and then killing the process in
which it was running. By default a statistics file will be
printed out, if it can be. To prevent this make No-Statistics
true.

Unhalt-Poligono Unarrests the process in which the Pol-gon simulation runs.
With-Printing-Bindings(&Body Body) This macro executes Body

with useful bindings for the system print control variables.
This makes sure that anything printed inside Body comes out
neatly.

Without-Poligon-Clock(&Body Body) This macro executes Body
with the simulation clock stopped.
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N. Functions for processing Multiple Values

The following functions create or manipulate Multiple Values.

Multiple-Values(&Rest values) -> a multiple values object, which con-
tains the values values.

First-Of-Multiple-Values(values) -> the first value of the multiple values
represented by values.

Second-Of-Multiple-Values(values) -> the second value of the mul-
tiple values represented by values.

Multiple-Values-Element-Of(n, values) -> the nth (zero indexed) value
from the multiple values object represented by values.

All-Values-Of(values) -> the list of all of the values represented by
values.

Is-A-Multiple-Values(something) -> non-nil if something is a multiple
values object.
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0. Output Routines

The routines provided by Poligon for output are as follows.

Debug-Format(control-string, &Rest format-args) Formats something
into the Lisp pane.

Debug-Heading(control-string, &Rest Heading-args) Formats
something into the Lisp pane and underlines it.

Debug-Princ(something) Princs something into the Lisp pane.
Debug-Print(something) Prints something into the Lisp pane.
Debug-Terpri0 Throws a newline in the The Lisp pane.
Poligon-Format(control-string, &Rest format-args) Formats

something into the Lisp pane.
Poligon-Princ(something) Princs something into the Lisp pane.
Poligon-Print(something) Prints something into the Lisp pane.
Poligon-Terpri0 Throws a newline in the Lisp pane.
Poligon-Format-and-wait(control-string, &Rest format-args)

Formats something into the Lisp pane.
Poligon-Princ-and-wait(something) Princs something into the Lisp pane.
Poligon-Print-and-wait(something) Prints something into the Lisp pane.
Poligon-Terpri-and-wait0 Throws a newline in the Lisp pane.
Trace-Format(control-string, &Rest format-args) Formats something

into the Lisp pane in the standard trace font.

These routines have the following effects. The Debug-* routines are designed for debug
purposes only. They stop the clock and use internal mechanisms which attempt to ensure
that the debug printing activity will not affect the simulation. The Poligon-Format / Print /
Princ / Terpri procedures are true user output procedures. They cause the desired output to
be routed through a single channel in the Poligon system, which is associated with the
Poligon-Blackboard Node. Output of this type counts as part of the user's program and is
subject to the normal constraints of the simulation of the version on which he is working.
This set of output procedures does not cause the system to wait whilst output is being
done. Because of this there is no guarantee that output will come out in the order expected
by the user. If synchronized output is needed then the next set of procedures should be
used. The Poligon-Format / Print / Princ / Terpri-and-wait procedures have the same effect
as Poligon-Format / Print I Princ / Terpri except that they wait until the output has finished.
This means that output being done in a given block of code will come out in the correct
order. The synchronization associated with waiting for output in a predictable order is po-
tentially expensive so the Poligon-Format / Print / Prine / Terpri procedures should be used
wherever it is meaningful.
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P. User Defined Parallelism

It is generally the case that the control of parallelism in Poligon models is left to the system.
There are cases, however, when it may be reasonable, because of the size of a, piece of
computation to attempt to do parts of it in parallel. To this end Poligon supports a mecha-
nism for achieving parallelism at the expression level by a function call model, as opposed
to the strongly co-routine modelled parallelism available in Poligon. This is done by the
use of a ParallelLet construct, an example of which follows.

Define Fibonacci (n)
ParallelLet n-I -Fibonacci (n - 1)

&Let n-2 - Fibonacci (.n - 2)
When n > 10

In n-i + n-2
EndPara lle iLet

EndDefine

The above is a trivial definition of a function for the determination of the nth Fibonacci
number. When n is greater than 10 it is considered worth doing the calculation in parallel
and it will therefore be done as such, otherwise the values will be calculated in series. It
should be noted than the values denoted by the names n-1 and n-2 are Futures. They will
thus only be defutured when they meet "+", a strict operator.

This construct is very closely related to QLet in QLisp. The determination of when opera-
tions should be performed in parallel is left entirely to the user.
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Q. Hints on Programming Efficiency in Poligon

In Poligon it is possible, as in any system, to write logically correct but, nevertheless,
hopelessly inefficient Models. The purpose of this section is to give some hints on how a
model should be organized in order to maximize its efficiency, without compromising its
intelligibility or its semantics. It should be noted that a number of the suggestions below
are not only likely to lead to efficient Models but also to more reliable and consistent
Models.

Q.1 Reading from Fields

All references to the Fields of a particular Node which are refered to within a rule or func-
tion should, wherever possible and meaningful, use the a-node & .field-1 & ofield-2 mech-
anism to read all of the values in one go. This is not only more efficient but guarantees that
all of the values are read consistently.

Significant performance improvements can be achieved by optimizing Fields, which act like
dictionaries, by telling the system that the elements in the dictionary will be indexed by an
integer. For more information on this please see Section 3.3.4.3.

If Fields are to be read in the body of a rule from the Node, which has had the rule trig-
gered on it then, if possible, these should be read during the evaluation of the When Part.
If there is no need to read any of these values in the When Part then the reading of them
should be Forced before the When Part is evaluated.

When using the function Map-Over-A-Collection on a Collection of Nodes it is advisable,
when the function being mapped refers to the node it is passed as an argument, to read any
Fields at the top of the function. This allows the system to spot these read operations be-
fore doing any potentially expensive work so that it can distribute the function invocations.
This is particularly significant for unordered Collections, for which the gain is likely to be
greatest.

Q.2 Efficiency from Typing

The efficiency of some functions and operators can be increased by type declarations using
the Has-Type macro or the The special form. Notable amongst these are=, and Is-In.

Some efficiency can be gained by declaring all functions which return coerced results to
have such, using the function Returns-Coerced-Result. This is worth doing even if the re-
sult type of the function is not known precisely.

Q.3 Efficiency in the Action Parts of Rules

If the expression on the right hand side of an Update Operator makes reference to the old
value of the Field being updated, either directly or indirectly through definitions, then it is
worth defining a Field modification behavior specifier function (see Sections 3.3.4 and
3.4.2.1). This has the benefits that you do not need to read the Field before the update is
made, which is more efficient, and there is no possibility of another rule changing the value
of the Field between the time that the action parts are evaluated and the time that the update
occurs.
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When the action part of a rule fires it attempts to find good places to execute the code. This
is usually on the Node to which the update is to be made. A problem can occur here if
some definitions have not yet been evaluated by the time that this remote update is made, a
deadlock could occur because the context in which the rule is being fired is waiting for the
successful completion of the remote update and the Node being updated may have to com-
municate with the Context in order to evaluate the definition. To circumvent this the system
spawns a new context at the updated node to execute the update. This is refered to as
Punting and is much less efficient than the non-Punting case. To help the programmer to
eliminate this inefficient behavior by Forcing definitions that need to be Forced before the
update is performed Trace & Break options have been provided. If it is meaningful to do
so it can be more efficient to Force all definitions that will be needed in the Action-Part of a
rule at the beginning of the Action Part.

Q.4 Miscellaneous Hints on Efficiency

Whenever a Field of a Node is read more than once in the body of a rule or function it
should be read only once and should have its value named using a Definition, Let or
MultipleLet form.

Care in defining appropriate equality testing predicates for structures can result in signifi-
cant improvements in performance. This applies also to the :No specifier. See Section
3.3.2.3.

If the user is not concerned with complex initialization and cache building matters for a par-
ticular class of Nodes it may be advisable to use a quoted class name argument to the New
Instance Of construct. See Section 3.3.3.3.

Whenever a number of rules, which trigger on the same Field of a Node have preconditions
(If Parts), which are mutually exclusively non-nil, these rules should be gathered together
into a case-like rule with a Select Part. Since only one rule can possibly fire this reduces
the amount to needless replication of effort and of invocation of rule activation contexts.

When the model has a need to determine whether there are any matches for a given condi-
tion it is much more efficient to do a Subset operation and then test the value of this opera-
tion with the functions Cardinality-Exceeds, Collection-Is-Empty or Collection-Is-Not-
Empty than it is to test the value of the Subset operation to see whether its Number-Of-
Elements = 0. This is because the former operations need only wait for one affirmative
reply from the Subset operation, whilst the latter must wait for all replies.
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R. Functionality that is in place, but does not work

R. 1 Run-Time Property Inheritance

For a number of reasons, the features originally provided for run-time property inheritance
in Poligon have died from software rot, though the code to support them is still in place.
These facilities are described in this section.

R.2 Property Inheritance

Property Inheritance in Poligon comes in three main forms. These are:

• Compile-time
• Run-time, through Supersystems
* Run-time, through Links

The compile-time form is completely different from the two run-time forms so they will be

described separately.

R.2.1 Compile-time Property Inheritance

Compile-time Property Inheritance takes the form of the inheritance of Fields by means of
the class hierarchy. This form of property inheritance has always worked in Poligon.

Classes inherit Fields on behalf of their Instances so that when an Instance of a class is
made at run-time it will have within itself all of the Fields specified for both that class and
all of its Superclasses. Thus, different Instances of the same class will have separate
copies of fields of the same name. It is by this means that each Sheep in the example in
Section 3.4 can have a different colour. Thus this form of inheritance is the inheritance of
characteristics, not the inheritance of values. Because a Node of any given class has a
physical copy of each of the Fields specified in its Superclasses it is possible to trigger
rules on these Fields just as one would on a Field declared for the specific class in ques-
tion.

R.2.2 Run-time Property Inheritance

Run-time Property Inheritance comes in two forms, which are similar in many senses.
These are inheritance through Supersystems and inheritance through Links. These two
forms of inheritance are distinct from the compile-time form because they can be thought of
as being the inheritance of the operations of Fields rather than characteristics of those Fields
themselves. Thus, it is possible to inherit the value of a Field at run-time, without inherit-
ing a copy of the Field. Similarly it is possible to inherit the ability to write, to cause an
Event on or make an Expectation on a non-local Field.

When a reference is made to a non-local Field the system attempts to inherit it from some-
where else. It first tries to inherit it from the supersystems of the Node in question.
Failing this it tries any Links that might be defined. Failing this an error is signalled.

R.2.2.1 Property Inheritance through Supersystems

When a reference is made to a non-local Field the system attempts to inherit first from the
Supersystems of the Node in question. It does this recursively, depth-first starting at the
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front of the values of the Supersystems Field. If it finds the Field that it is looking for it
does the operation there and then returns. If it fails to be able to inherit the Field it returns
in such a manner as the system will then try to inherit from any Links that might be present.

An example of the use of this form of inheritance might be that a Sheep, from the example
in Section 3.4 might want to know about the location of the Flock of which it is a member.
This is a characteristic of the Flock as a whole, not of an individual Sheep but could be ac-
cessed simply by the expression:

a-sheep •Flock-Location

Where a-sheep is a Sheep and Flock-Location is the name of a Field in the Flock of which
a-sheep is a Subsystem.

R.2.2.2 Property Inheritance through Links

When the system fails to inherit a field from any of the Supersystems of a particular Node it
tries to inherit it from the Nodes to which the Node has been linked by the Link mecha-
nism. This is described fully in Section R.2.4. 1, the section concerning the Link Type of
Change. The manner in which the inheritance happens is just like that for inheritance
through Supersystems, it happens depth-first, starting from the first element in the Latest
value of the Links field for the Node in question. The purpose of the Link mechanism is to
provide a means of expressing relationships other than "Is an instance of" and "Is sub-
servient to/Is a component of". Thus in the example in Section 3.4 one might express the
fact that a particular sheep is in a barn by linking it to an Instance of the class Barn with a
Link called "Is In". The sheep would then be able to inherit the characteristics of the barn.

R.2.3 System Defined Fields for Property Inheritance
The following are the system defined fields that are used to support property inheritance.

Inherit The value of this field is always Empty. Its purpose is to
provide a field, on which rules can be hung so that Property
Inheritance can be monitored. When a property is inherited
along a Link the Inherit Field of the Node which represents
the Link is triggered.

Is-A-Link The Latest value of this field is a flag, which is non-nil if the
Node in question is being used as a Link Node. For more
information on Link Nodes please see Section R.2.4.1.

Links The values of the Links field are the Links associated with
the Node in question.. For more information on Links please
see Section R.2.4.1. These Links are represented as in-
stances of the system internal data structure Link-Cell.
Functions for processing Links can be found in Appendix S.

R.2.4 Change Types Used by the Property Inheritance Mechanism
A number of change types are implemented to support the property inheritance mechanism.
These are described in this section.

Link Allows the model to connect Nodes together with a bidirec-
tional Link. This Link can have arbitrary properties associ-
ated with it and allows Property Inheritance of fields.

Link Subsystem Allows the model to connect Nodes together with a
Subsystems to Supersystems Link. This Link allows
Property Inheritance of fields.
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Unlink Allows the model to disconnect Nodes, which are already
Linked together by a Link.

Unlink Subsystem Allows the model to disconnectNodes, which are al-
ready Linked together by a Subsystems to Supersystems
Link.

R.2.4.1 The Link type of Change

The Link type of Change allows the user to use the Blackboard as a sort of
Entity/Relationship/Attribute database. Links are represented as-Nodes. This means that
they are first-class citizens in the Poligon system. A Link can therefore have any number
of Fields defined for it, as well as a name, which is the mechanism by which the system
distinguishes between Links between the same pair of Nodes.

A Link between two Nodes can be made in the following fashion.

Changes :
Change Type : Link a-node to another-node
Class : a-class-of-link-nodes
Link : "The name of the Link"
Updated Fields :

a-field-in-the-link-node (- 42

This piece of code causes a Link to be made between a-node and another-node, which is of
the class A-Class-Of-Link-Nodes. The link has the name "The name of the Link" and is
having its Field called A-Field-In-The-Link-Node modified to have the value 42 added. If
a Link already exists between the Nodes specified, which has the name specified then that
Link is used, otherwise a new one is created. Any number of Fields in the Link Node can
be initialized in the Updated Fields component.

One of the major reasons for the Link mechanism is to support Poligon's Property
Inheritance. If the user attempts to read a field from a Node, which does not have such a
field then the system will attempt to inherit the field from a Node, to which the Node in
question is linked by the Link mechanism if it cannot find it by other means. This is de-
scribed fully in Section R.2, the section concerning Property Inheritance. Any, possibly
cyclic, graph of Nodes can be linked. The search for a Node, which has a matching field
happens in depth-first fashion along the Links. Suitable checks are made which force
backtracking in the event of an attempt at inheritance along a cyclic path.

The values, which are inherited are not cached. This is because in the general case the cost
of maintaining cache consistency is likely to be as great as the cost of fetching the value
again.

R.2.4.2 The Link Subsystem type of Change

The Link Subsystem type of Change allows the user to add new Subsystems to
Supersystems Links at times after a Node has been created. This allows changes in the un-
derstanding of the world to be reflected in the Subsystems and Supersystems Fields. An
example use of this construct is shown below.

Change Type : Link Subsystem a-node To new-supersystem

In this example the Nooe a-node is to have new-supersystem added to it as a new
Supersystem. Similarly new-supersystem will have a-node added to its Subsystems.
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R.2.4.3 The Unlink type of Change

The Unlink type of Change allows the user to delete Links. This Change Type is the in-
verse operation of Link. An example of the use of this construct is shown below.

Change Type : Unlink a-node Frcm old-linked-to-node
Link : 'a-link-name

In this example the Node a-node is to have the Link Called a-link-name unhooked between
itself and old-linked-to-node. If no such Link is present then nothing happens.

R.2.4.4 The Unlink Subsystem type of Change

The Unlink Subsystem type of Change allows the user to delete existing
Subsystems/Supersystems Links. This Change Type is the inverse operation of Link
Subsystem. An example of the use of this construct is shown below.

Change Type : Unlink Subsystem a-node From old-supersystem

In this example the Node a-node is to have old-supersystem removed from its
Supersystems. Similarly old-supersystem will have a-node removed from its Subsystems.
If no such Link is present then nothing happens.
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S. Functions for Processing Links

Links in the Poligon system are represented as Nodes. A field in each of the Nodes, which
is linked holds a list of all of the Links coming out of the particular Node. The value of this
list of Links is a list of Link-Cell data structures. These represent the ends of the Links.

The following functions are provided for the processing the Links of a Node.

Link-Between(a-node, another-node) -> A Link Node, which links a-
node to another-node or nil if there is no such Link.

Link-Between-Named(a-node, another-node, link-name) -> A Link
Node, which links a-node to another-node whose name =
link-name, or nil if there is no such link.

The following functions are provided for the processing of Link-Cells.
Is-A-Link-Cell(a-link-cell) -> T if a-link-cell is indeed a Link-Cell.
Link-Cell-Link(a-link-cell) -> The Link Node associated with the Link-Cell.
Link-Cell-Link-Name(a-link-cell) -> The name of the Link.
Link-Cell-Linked-to(a-link-cell) -> The Node at the other end of the

Link.
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This paper describes the desire to speed up programs in the field of Artifi-
cial Intelligence through the use of parallel hardware architectures and
why this objective is not a simple one to achieve.

Poligon, a system designed to investigate ways to mount Artificial Intelli-
gence programs on parallel hardware, is described, experiments per-
formed to date on this system are described and tentative results are given.

Achieving useful speed-up has proven very difficult. These difficulties are
enumerated and explained. 1

1. Introduction

The domain of supercomputing has traditionally been very large regular
problems. This has been driven by two main forces;

" A large class of important problems were soluble by existing pro-
gramming technology but were intractable with "normal" proces-
sors, e.g. PDE solution, finite element analysis or simulation.

* Early programming languages focused on Arrays as data struc-
tures, whose use could efficiently use the hardware available. This
led to the idea ofvector and array processors.

It is, therefore, by no means a coincidence that the sort of problems that
tend to use existing supercomputers are those problems best suited to su-
percomputers.

The field is changing now, however. This is driven by two main forces;

" Developments in hardware technology now allow the development of
multiprocessor systems composed of large numbers of relatively
simple processors, which are potentially more cost effective than ex-
isting super-complex supercomputer uniprocessors.

" Both hardware and software technologies have progressed to a point
where a number of problems which have become soluble by means of
symbolic programming would now like a slice of the speed-up cake.

Symbolic computation has for a long time been accused of inefficiency. Re-
cent developments in compiler and hardware technologies, however, have
allowed the development of high performance uniprocessor workstations
for the execution of symbolic programs. These have shown that there is a

1This paper also appears in the proceedings of the Third International Conference on Su-
percomputing, May 1988, and Artificial Intelligence, Simulation and Modelling,
Lawrence Widman (ed), John Wiley Publishing Company, New York 1989
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large class of Artificial Intelligence (Al) problems for which significantly
greater computational resources will be needed to make these problems
worth addressing. This has focused the attention of Al and symbolic pro-
gramming research on the exploitation of parallelism.

The sort of problem currently applied to supercomputers is very crystalline
[Seitz 85] in nature. This means that a relatively small "inner loop" of the
computation can be vectorized in order to exploit existing supercomputer
hardware [Kuck 81]. Similarly such problems can often exploit parallelism
at a finer grain in a systolic manner [Kung 78].

AI problems have none of these useful characteristics [Lee 85]. This paper
describes first what is meant by Problem-Solving and how this relates to
parallelism (Section 2). It goes on to describe

Poligon [Rice 86] a system implemented in order to investigate the potential
for speed-up of a class of AI applications called "Blackboard Systems"
through parallelism (Section 3). After this some preliminary experiments
and what we have learned from them and discussed (Section 4).

2. Parallelism and Problem-Solving

In this section we examine what is meant by "Problem-Solving", contrast-
ing it with common supercomputing doctrine and concerns. This will
show why it is that a different approach to parallelism than is taken by con-
ventional programs is necessary in Al and also why it is so hard to achieve.

2.1. What is'Problem-Solving?
Questions are never indiscreet. Answers sometimes are.

- Oscar Wilde, "An Ideal Husband"

"Problem-Solving "was often taken to refer to the process of searching a tree
or graph of alternative solutions. "Knowledge" is that which allows the
program to eliminate searching parts of the tree. For instance, a chess
playing program might have a tree made of all of the legal moves at any
given point'. The term "knowledge" will always be used in this sense in
this paper. The application of strategic knowledge, such as knowledge
about chess end games, to each generated node in the tree would point out
to the system likely candidate paths to follow. The method of constructing
all legal possibilities at any given leaf of a dynamically generated tree and
then testing them to determine whether they are possibilities worth follow-
ing is usually referred to as the Generate and Test method. It is an axiom
of such systems that the more knowledge there is the less blind search has
to be done - the more efficiently the tree is pruned.

The focus of much AI research is on the use of knowledge to reduce or ob-
viate search. This is because such searches are expensive and combinato-
rial processes. The use of knowledge in this way might not be the best solu-

1Clearly this tree cannot be fully instantiated with the resources available in the universe.
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tion for the future since the use of highly parallel architectures to evaluate
multiple alternatives might be faster than executing this highly specialized
knowledge. What is more, this could also save the human cost of acquiring
and encoding such knowledge. The acquisition of knowledge is generally
thought to be one of the major obstacles in the way of the more general ap-
plication of AI systems to real-world problems.

The important thing, for the purpose of this paper, about problem-solving
systems and the problems that they address is that they are structurally dif-
ferent from "conventional" programs. Throughout this paper the terms
"Problem-Solving" and "AI system" will be used to describe these systems.
The term "Conventional" will be used to describe existing practice in the
supercomputer world. Some of the characteristics that make such a prob-
lem different from a conventional programming problem are listed below.

" The problem itself is often ill-defined.

" There is often more than one possible solution. This means that a
satisficing', rather than an optimal solution is usually the "right"
answer. This is quite unlike most conventional programs for which
there is one and only one right answer, within the margin of error of
the system. 2

" The paths to a solution cannot predefined in such systems. Possible
solution paths must be dynamically generated and tried.

" The structure of such programs differs from conventional programs
in three fundamental ways; in their data structures, their control
flow and their control structures.

Data Structure It is generally the case that the data upon which the
system has to operate cannot be encoded simply into an ar-
ray. This is because such data structures are usually highly
complex and often cyclic graphs, which are created dynami-
cally, thus precluding static allocation and optimization.

Control Flow The solution to the problem is not regular, which is to
say that the behavior of the problem-solver is typically very
data-dependent. In a PDE solving program, for instance, the
computational demands of the system at any point are well
understood. This is because well defined and well under-
stood algorithms are used and the computational demands of
matrix inversion, for example, are reasonably easy to esti-
mate. This is not the case in Al programs. Apparently triv-
ial changes to the source data can cause huge changes to the

1A solution that is said to be "good enough."
2 Linear optimization is a notable exception to this. Clearly many programs use heuristics
and so the distinction made here is simply one of degree. AI problems are usually com-
posed of a larger proportion of heuristics than conventional programs.
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computation performed. As an example of this one might
consider the behavior of a chess program when the opponent
elects to make an unexpected move. What is more, the code
generated for these programs is usually very branchy [Lee
85], thus reducing the benefits of fine grained pipe-lining.

Control Structures The knowledge that AI programmers try to en-
code in their programs is usually functionally different from
that knowledge which is usually encoded in conventional
programs. That is to say it is more likely to be a high-level
specification of the intended behavior of the system, as op-
posed to a set of instructions for how to compute the answer.
Such details are usually left to the system. For instance, the
program might be compiled into a set of assertions and rules
in a Prolog system [Clocksin 81]. The program itself is exe-
cuted indirectly through a virtual machine which interprets
these specifications as its instructions. This results in most
of such programs not being amenable either to existing vec-
torizing algorithms or to the application of well defined algo-
rithms.'

The factors mentioned above result in AI problems not having the proper-
ties needed for them to be parallelized by conventional means. This is cause
for considerable concern for those who would like to achieve orders of mag-
nitude of speed-up for their AI programs.

2.2. Concerns for Supercomputers
On how to trap a lion in a desert [Petard 38]: A topological method.
We observe that a lion has at least the connectivity of the torus. We transport the
desert into four-space. It is then possible [Seifert 34] to carry out such a deforma-
tion that the lion can be returned to three-space in a knotted condition. He is
then helpless.

Implementors and programmers of supercomputers have traditionally fo-
cused on the efficient use of the hardware and the matching of the hard-
ware to the problem. Some examples of these are discussed below.

2.2.1. Where does parallelism come from?

Parallelism in conventional programs is either easy to get or nearly impos-
sible. If the program does a lot of simple operations on arrays whose de-
pendencies and recurrences are simple and can be unraveled then massive
data parallelism 2 can be exploited. It is by this means that vector machines
are able to achieve their performance. It is not generally the case that there
is, qualitatively speaking, more than one thing happening at any given

'These interpreters themselves may, however, be implemented using well understood al-
gorithms or microcode.
2Parallelism due to similar operations being performable on independent items of data,
for instance elementwise addition of two arrays.
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time. Such programs are parallel in a SIMD sense [Flynn 72]. If the con-
trol flow is too complex to analyze then the compiler may not be able to un-
wind the parallelism out of the program. 1

AI programs are typically short on data parallelism. There are certainly
problems which have significant data parallelism but not of the order that
one might get in extremely regular, conventional programs. This means
that anAI system which hopes for speed-up through parallelism must be
able to exploit knowledge parallelism. It must be able to execute a signifi-
cant number of different chunks of the program simultaneously. This is
MIMD parallelism. The Poligon system described in Section 3 is designed
to exploit this sort of parallelism. 2

Most high performance processors today exploit pipe-line parallelism in the
execution of instructions. Pipe-line parallelism is also exploited at a some-
what coarser grain by the new generations of multiprocessor systems such
as systolic arrays. It is crucial that any system hoping to exploit parallel
hardware effectively should be able to exploit pipe-line parallelism. This is,
in fact, considerably harder in AI systems because of the irregular struc-
ture of the problem. The Poligon system tries wherever it can to exploit
pipe-line parallelism.

2.2.2. What sort of hardware should be used?

In order to be able to exploit the parallelism in a program to the best possi-
ble degree there must be an appropriate match between the compiled pro-
gram and the target hardware. This means that if a speed-up of no more
that 10 to 20 is either hoped for or expected then the program should proba-
bly be executed on a shared-memory multiprocessor 3. If more speed-up
than this is needed then a hardware design that will scale better should be
used'- some form of distributed memory architecture.4 This could, in prac-
tice, have a grain size varying from that of the Cosmic Cube [Seitz 85] to that
of the Connection MachineTM [Hillis 85]. 5 The Poligon system is designed to
be matched to run on a multiprocessor, which should scale satisfactorally
to the order of hundreds or thousands of processing elements, each element
being a highly competent symbolic language processor. This is the pure

1The Connection Machine [Hillis 85] is an example of an experiment to test the contrary
hypothesis, that SIMD machines are, indeed, appropriate for Al applications.
2MIMD programs typically have a set of implementation difficulties and bugs which are
not so frequently seen in SIMD programs. These are caused by having a number of radi-
cally different types of program executing, all at different speeds and trying to communi-
cate with one another. This causes data to arrive "out of order" and race conditions. Many
of the pit-falls of parallel AI programming mentioned in this paper are a consequence of
this.
3Some experiments have shown rather disappointing results here, saying that this is all
that can really be hoped for. [Gupta 86]
4Recent claims have been made that some shared memory architectures can scale well
[Wilson 87].
5Connection Machine is a trade mark of the Thinking Machines Corporation.
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value passing CARE machine model [Byrd 87], one of several CARE ma-
chine models implemented as part of the same project of which Poligon is a
part.

2.2.3. Compilation

Vectorizing FORTRAN compilers have been the main implementation lan-
guage in supercomputing circles for quite some time. There is consider-
able inertia in the field in this respect. Similarly AI programmers are in
many senses locked into the use of Lisp [Steele 84] or Prolog [Clocksin 81] as
their implementation languages. Problem-Solving systems have tradition-
ally not been very efficiently implemented, even if the underlying imple-
mentation language has been. This is because it is expensive in human
terms to implement such systems efficiently and their typical life span has
not justified this sort of optimization effort. This state of affairs is begin-
ning to change. There is now a demand for highly competent programs us-
ing AI techniques being embedded, for instance, into military hardware.
This asks not only for high performance but also for high reliability, main-
tainability and modifiability. Lisp and Prolog in their common implemen-
tations are not languages which can easily be parallelized in the same way
that FORTRAN compilers are. 1 There is, therefore, a need to develop lan-
guages not only capable of exploiting the parallelism in forthcoming hard-
ware but also capable of expressing the richness of these complex symbolic
programs. On top of these will need to be built highly competent tools and
frameworks which will be needed for a satisfactory parallel AI development
environment. The Poligon system is a first-cut prototype system developed
with the objective of being able to extract parallelism from programs both by
the system and by encouraging a clear programming style and problem de-
composition methodology, which leads to more parallel programs.

2.3. Concerns for Problem-Solvers

The concerns of the implementors of Problem-Solving systems are quite dif-
ferent from those of supercomputer programmers. Some of these concerns
are enumerated below.

2.3.1. Solutionquality

As has been mentioned above, AI programs are generally expected to pro-
duce a satisficing solution. This has a significant impact on the behavior of
the program, since paths used to determine heuristic solutions might be
very different from those used to find analytic solutions, even if analytic so-
lutions are known.

lImplementations of both of these languages have been made with "do-this-bit-in-parallel"
constructs e.g. [Gabriel 84] and [Clark 85] and much work is now focusing on the automatic
extraction of parallelism in these languages but as yet no symbolic programming equiva-
lent of a vectorizing FORTRAN compiler has been produced. This is because it is gener-
ally not known at compile time whether any given expression is worth evaluating in par-
allel, given the costs of process creation and such-like.
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2.3.2. Search

These heuristic programs are typically characterized by searching a great
deal for patterns over a large graph. 1 This large amount of search admits
both And andOr parallelism, in principle. The Poligon system has specific
mechanisms to facilitate the efficient execution of such searches. 2

2.3.3. Coherence

The implementor of an AI program may not be aware of the eventual be-
havior of his program when he is implementing it. This is a function of the
complex nature of such problems and the fact that the paths to their solu-
tions are not predefined. It is, nevertheless, very important that the pro-
gram reach a coherent solution, even if just a satisficing one. It is no good
if different parts of the solution space have mutually contradictory local so-
lutions which contribute to the overall solution. Because the knowledge
that goes into such systems is usually implemented in distinct chunks,
which may know little about the operations performed by other such
chunks, there is significant potential for the system getting confused as dif-
ferent subsystems "trample on each others' toes." This means that it is by
no means a trivial issue to make sure that a coherent or convergent solu-
tion is achieved by Problem-Solving systems. This problem is exacerbated
by the asynchronous behavior which can happen in MIMD parallel sys-
tems. The Poligon system is designed to help the programmer arrive at co-
herent solutions, whilst still encouraging parallelism at a fine grain.

2.3.4. Programming

Heuristic programs are typically large and their density is great.3 This
means that their code encapsulates a great deal of knowledge. It is difficult
to write such programs for a number of reasons.

* It is difficult to acquire the knowledge that goes into them, since this
is typically not encoded already in a formal algorithmic way.

* It is difficult to represent the knowledge once it has been acquired.
For instance, the programming associated with implementing a
statement such as "Control of center is very important during open-
ings" would be considerable.

" Good, clean implementations of such systems need to maintain the
logical independence of the knowledge in the system. This is because
failure to do so can result in systems that are very brittle when

l1n fact this graph can be of semi-infinite size and often has to be computed on demand; cf.
the game tree for a chess game.
21f search dominates the computation then massively parallel machines such as the Con-
nection Machine [Hillis 85] may well prove to have the best performance.
3This means that the number of executed machine instructions for each line in the source
code is typically very large.
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knowledge is executed in new orders or when new knowledge is
added. The interconnectedness of knowledge is often difficult to de-
termine when the knowledge is formulated. .Clearly having depen-
dencies between pieces of knowledge could have a significant impact
on the amount of parallelism that could be extracted from such a
program and on the program's ability to get the "right" answer.

It is, therefore, a major concern of AI programmers that these programs
should be easy to implement, debug, modify and maintain.

3. Pollgon a System for Parallel Problem-Solving

In this section we describe Poligon. Poligon is an attempt to produce a sys-
tem which addresses the issues mentioned above to support the develop-
ment of parallel AI systems. It represents, in many ways, an attempt to
find an analogue for and implement a parallel form of existing Al systems,
known as Blackboard Systems [Nii 86].

A brief description of the important aspects of blackboard systems will be
given, then Poligon itself will be described; structurally, in the way in
which it matches its problem domain, and the way in which it is matched
to its target hardware.

3.1. Blackboard Systems

.. :, . . .

Fig. 1. The Blackboard Metaphor. Eegar, uses encoded knowledge and
comes to a startling conclusion.
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Blackboard systems are instances of a particular computational or
problem-solving model - the "blackboard" model or metaphor. This
metaphor takes as its source the idea of a collection of experts gathered
around a blackboard (see Figure 1). Each expert has a specific domain of
expertise, which relates to how a part of the problem at hand is to be solved.
Each expert looks at the blackboard for representations of the problem
which are of interest to his specific area of expertise. Having found such a
piece of information he performs whatever operations he finds necessary
and posts his conclusions on the blackboard. .This new representation of
part of the solution might itself be of interest to another expert and so the
process continues.

It is clear from this that the sum of the knowledge in the system must be
sufficient to connect all of these areas of expertise. With less knowledge
than this the problem simply will not be soluble. With more knowledge
than this it should be possible to achieve successively higher performance
from the system; be it faster solutions or better solutions.

This simple model has considerable intellectual appeal and has been the
cause of substantial research. It is often claimed that all of these "experts"
should be able to operate simultaneously. The Poligon system represents
an attempt to test this assertion.

Blackboard Knowledge Base
KS

Nod Rule

KSI Rule

Nod N KS

____ ___ ____ ___ ____ ___ ___R ule

Scheduler

Fig. 2. A Serial Blackboard System. Here, the Scheduler notices a modifi-
cation event and invokes a Knowledge Source.

Blackboard systems are typically implemented as large data structures -
the blackboard - in which are stored the elements of the possible solutions,
called Nodes, which are typically linked together in some way to form a
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complex graph. There are normally a large number of these nodes, repre-
senting everything from the input data through intermediate solutions to
high level abstractions of the current state of the solution. Nodes have in-
ternal structure, which allows the mapping of names onto values. They
are usually made up of a collection of named Slots or Fields, which contain
data pertinent to the solution. The knowledge in the system is usually im-
plemented as a collection of pattern-action Rules collected into groups
called Knowledge Sources (KSs) [Nii 80]. These reside in an area referred to
as the Knowledge Base (see Figure 2).

3.1.1. Consistency and Coherence

Reaching a coherent solution, discussed in Section 2.3.3, in a blackboard
system is a function of achieving consistency in a number of aspects:

Node Level The program should create the right number of nodes
representing the elements in the solution and they should be
connected together correctly.

Slot Level The slots in the nodes should contain a respectable rep-
resentation of the state of that node and its relationship to
others.

Rule Execution When rules are executed they should do so in an
environment which is internally consistent. This means that
any information used in the rule during its execution should
be based on a consistent snapshot of reality.

3.2. A description of Poligon

Poligon is a framework for the development of blackboard-like applications
on a (simulated) multiprocessor. It consists of:

1 A compiler, which compiles a high-level description of the Black-
board's structure and the knowledge to be applied by the system, to run
on a distributed memory multiprocessor.

2 A run-time system which provides a debugging and testing environ-
ment for Poligon programs as well as run-time support.

Both the compiler and the run-time system are thoroughly integrated with
the program development environment of ExplorerTM Lisp machines,, the
machine on which the execution of Poligon programs are simulated.

Serial blackboard systems are implemented with the nodes being repre-
sented as records on the blackboard. 2 The knowledge is encoded in knowl-
edge sources. These are typically compiled into procedures which are in-

1Explorer is a trade mark of Texas Instruments Incorporated.
2These records might well be Pascal-like records or instances of some class in the native
system's object-oriented package.

4-149



voked by the blackboard system's kernel. There is some form of scheduler
for the knowledge, which invokes one knowledge source after another. The
blackboard and the knowledge base both share the same address space,
though they are functionally distinct. Knowledge sources are "invoked"
(executed) as a result of changes in the blackboard placing that change
event in a queue used by the scheduler. The scheduler repeatedly picks a
knowledge source which is interested in the type of event at the end of the
queue.

Rules Node

Processing Element

Rules Node

EK]

Rules Node Node Rules

Fig. 3. Poligon's Blackboard. Nodes are seen linked together being
watched by Rules, waiting for modification events.

The design of Poligon has been motivated by the idea of trying to eliminate
the bottlenecks that would be experienced if an existing, serial blackboard
system were to be parallelized by the inclusion of do-this-bit-in-parallel con-
structs.1 The major changes from this model are listed below.

The scheduling queue of a serial system is eliminated altogether in
Poligon. This means that concurrent attempts to invoke rules are not
held up waiting for access to this shared data structure.

1The Cage system [Aiello 86] is an example of a considerably more conservative approach
to the parallelizing of blackboard systems.
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* Having a knowledge base, which is logically distinct from the black-
board, is no longer necessary since there is now nothing to get be-
tween them to control the application of the knowledge. This allows
all knowledge to be attached to those nodes that are interested in the
knowledge by the compiler (see Figure 3).

These changes eliminate at one stroke the bottlenecks of the shared sched-
uler and the knowledge base to blackboard interface. These changes al-
lowed the development of the idea of the "node-as-a-processor" metaphor for
parallel blackboard systems.

Having eliminated the scheduling mechanism, however, one needs some
means of determining when a certain piece of knowledge should be in-
voked. It would be hopelessly inefficient to have all of the knowledge exe-
cuted all of the time, since most of the time it would find itself inapplicable.
It was decided that a simple daemon-driven approach would be used to
avoid this problem. This results in the knowledge being directly sensitive to
changes in the blackboard and able to act immediately upon any such
changes.

Existing blackboard systems often express the knowledge in their knowl-
edge sources as collections of pattern-action rules. These are normally ex-
ecuted serially, in the lexical order in which they are defined. Poligon on
the other hand compiles knowledge sources away all together, allowing
their constituent rules to be executed in parallel.

The node-as-a-processor metaphor is itself a major step away from the
normal means of implementing blackboard systems. This, however, is not
enough. This would give us data parallelism, resulting from the large
number of nodes in the system being able simultaneously to execute rules,
whilst still failing to exploit the potential knowledge parallelism. This is
because each processing element is a uniprocessor, clearly capable of exe-
cuting at most one rule at a time. 1 Poligon, therefore, goes beyond this
simple model to one which would more accurately be called the "rule-invo-
cation-as-a-process" model. This allows the Poligon system to distribute
concurrent rule invocations to different processing elements (see Figure 4).

The elimination of serializing components in a blackboard system also
eliminates those mechanisms which are normally used to preserve co-
herency in the solution. Clearly there is a trade-off which can be made be-
tween the amount of control and coherency preserving mechanisms and
the amount of exploitable parallelism. Poligon is an experiment to explore
one extreme of this spectrum. It remains to be seen whether the trade-off
made in Poligon results in an overall improvement in system performance.

lEach element allows multiple processes but only one is executed at any time.
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Node Rules

Node Rules Node Rules

U tUpdeate

Fig. 4. Poligon's Execution model. An update to a Node triggers concur-
rent Rule invocations, which in turn update other Nodes. Pipes are formed

as changes to the Blackboard flow from one Node to another.

3.3. How Poligon matches the problem domain

Poligon is not a general purpose programming language, other than in
theTuring complete sense [Turing 36]. It is specialized to support one com-
putational model and that computational model, itself, has limitations on
its sphere of reasonable applicability. It has been designed with applica-
tions such as real-time signal understanding and data fusion in mind,
though applications outside this domain are being investigated.

The structure of the problem domain is one that requires the representation
of a large number of distinct entities in the solution space. For example the
vocabulary of the problem domain is full of such things as aircraft, radar
emitting platforms and radar track segments. Poligon provides a rich rep-
resentation language in which these objects and specializations of them
can be expressed. This allows the system to take full advantage of the mu-
tual independence of any of the objects in the solution space to exploit paral-
lelism.

3.4. How Poligon matches its target hardware

Poligon could, of course, run on any machine in principle. In practice,
however, it has been designed with a particular kind of machine model in
mind and has been optimized to take advantage of it. This class of target
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machine, which was briefly described in Section 2.2.2, is exemplified by cer-
tain kinds of message-passing, distributed-memory multiprocessors. The
grain size of the executable chunks in Poligon programs is designed to suit
this model, i.e. each chunk represents, ideally, a few function calls. This
makes it coarser grained than those systems that want to execute ev-
erything that can be in parallel, for instance data flow machines [Dennis
80], but it is a lot finer grained than most other concurrent blackboard sys-
tems, such as [Lesser 83] in which each processing element contains a
complete blackboard system.

The target machine model, being of the distributed-memory, message-pass-
ing variety including essentially no capability to pass references, strongly
discourages shared variables or mutable global data of any sort and
encourages a message-passing style of programming. The Poligon
language is one in which the programmer is given an abstract view of pro-
gramming using the blackboard problem-solving model. The Poligon lan-
guage has no construct for message sending at all, nor has it any primi-
tives by which the user has access to the underlying architecture or topol-
ogy. It is assumed to be the duty of the Poligon system or the target ma-
chine's operating system to look after such concerns. The Poligon compiler
compiles its programs into the message passing primitives of the underly-
ing system. This allows the efficient use of the underlying architecture,
whilst still leaving the source program uncluttered by concrete details of
the target architecture.

Poligon allows only global constants, but not variables, since these can be
distributed at program load-time.

3.5. What we have learned
Truth comes out of error more easily than out of confusion. -

-Francis Bacon

Experiments with Poligon are by no means complete, but we have learned
quite a bit so far. Some of these lessons are enumerated below.

" It is very hard to write any program which implements either a
framework, such as Poligon or an application such as those which
have been mounted on Poligon. This is due largely to asynchronous
side effects. A system with better formal properties would be less er-
ror prone in this respect but might well make less efficient use of the
hardware. These difficulties could also be caused by an insufficiency
of mechanisms to control coherency inPoligon (see Section 3.1.1.)

* In order to produce a reliable program it is necessary to write code
which makes no assumptions about anything that any other part of
the system might be doing. Failure to do so results in brittle systems.

" In order to achieve a coherent solution it was found to be necessary to
develop a number of programming methodologies. These will be cov-
ered in the same form as they were introduced in Section 3.1.1.
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Node Level The creation of nodes is tricky. Because each element is
likely to represent some real-world object, such as an air-
craft, it is important either to provide a mechanism for re-
solving the conflict caused by multiple asynchronous re-
quests to create an element that represents the same thing or
to provide a mechanism for managing the creation of nodes.
Poligon opts for the latter approach.

Slot Level The programmer should cause each node to have an idea
of how to improve its own idea of the solution - to have Goals.
In Poligon this is done at a fine grain, with each field of each
element in the solution being able to have associated with it
functions which enable it to evaluate itself. This state of af-
fairs has been observed in a different manifestation at a
larger grain size in [Corkill 83].

It was found that a good axiom for programming these sys-
tems is "Never throw away any data unless you are con-
vinced that you have better data." This is the sort of behavior
that is used in the evaluation functions mentioned above.

Rule Execution Poligon attempts to maintain the smallest critical
sections possible. The original implementation of Poligon in
fact had as its only atomic actions reading a field and writing
a field. It was soon found that, in order to maintain consis-
tency during rule execution, it had to be possible to read the
values from a number of fields simultaneously - taking a
snapshot without the subject moving. This, coupled with
critical sections for the writing of collections of values, allows
confidence that the picture that one sees when taking such a
snapshot of a node is consistent, even if not necessarily the
most up to date. It is important for a Poligon programmer to
be aware that the node of which a snapshot has been taken
may well be read from and written to by other rules asyn-
chronously during the invocation of the rule taking the snap-
shot.

4. Experiments

In this section we describe, briefly, a series of experiments being performed
by the Advanced Architectures Project [Rice 88] at Stanford University on
the Poligon system and on Cage [Aiello 86] and Lamina [Delagi 86], other
systems developed as part of the same project. However, these experiments
will be discussed only in the context of the Poligon system.

It would be premature to quote any hard and fast performance figures here,
since we still have much to do in order to understand the results that we
are getting. The main purpose of reporting these experiments is to show
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the lessons that have been learned both from performing the experiments

and about the ways in which Poligon behaves. 1

4.1. The Problem

Each of the systems mentioned above has been used to implement an appli-
cation called "Elint", a problem in the domain of real-time interpretation of
passive radar signal data [Brown 86].

The problem is one of receiving reports from radar systems, abstracting
these into hypothetical radar emitting aircraft and tracking them as they
travel through the monitored airspace. These aircraft are themselves ab-
stracted into clusters - perhaps formations - which are themselves tracked.
The nature of the radar emissions from the aircraft are interpreted in order
to determine the intentions and degree of threat of each of the clusters of
emitters.

The Elint application has a number of characteristics which are of signifi-
cance.

* The system must be able to deal with a continuous data stream. It is
not acceptable to wait until all of the data has been read in and then
figure out what is going on.

* The application domain is potentially very data parallel. The ability
to reason about a large number of aircraft simultaneously is very im-
portant. What is more, the aircraft themselves, as objects in the solu-
tion space, are quite loosely coupled.

* The application is knowledge poor. This means that the experiments
performed were geared primarily to evaluating the performance of
these systems with respect to data parallelism, not knowledge paral-
lelism.

4.2. The Purpose of the Experiments
I see no mention of God.

-Napoleon
I had no need of that hypothesis.

-Laplace

These experiments have five main objectives.

1 To investigate methods of achieving speed-up for expert systems appli-
cations by mounting them on parallel hardware architectures. 2

2 To build a number of systems using different computational and prob-
lem-solving models and compare their relative performance and thus

1Since this paper was written, many more experiments have been performed and their re-
sults published in [Delagi 881 and [Nii 88].
2"Expert Systems" are AI systems which attempt explicitly to encode the knowledge of hu-
man experts.
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to deduce an appropriate course for future research. It is therefore
imperative that, to the greatest degree possible, each of the systems
should implement the same application and should perform the same
experiments.

3 To perform experiments on individual systems specialized to investi-
gate characteristics of each computational model, which might not be
shown by the experiments mentioned above and which are not shared
by other systems.

4 Having done the above, it should be possible to draw some conclusions
about the amount of speed-up attainable given these architectures.
This should help one to conclude whether these architectures are in
fact appropriate and efficient for parallel implementation.

5 The implementation of the Elint system in Poligon was intentionally
not tuned. This means that it was a copy of the original serial imple-
mentation modified only in so far as it was necessary in order to make
it solve problems correctly in parallel. The intent was to achieve a rea-
sonable measure of the performance of an average system that might
be written by a Poligon user, as opposed to a very highly tuned version.

4.3. A Description of the Experiments Performed on Poligon

Deciding exactly which experiments to perform is difficult, since there are
a very large number of variable factors in the system. Amongst these are;
the implementation of the Elint system, the characteristics of the data sets
used and numerous machine simulation parameters including processor
and communications network performance. However, it was decided to
freeze most of these and perform a number of experiments, having chosen
"reasonable", justifiable values for the frozen parameters. We have, in fact,
learned a lot from this process and this has helped us to design a better set
of experiments, which are now being performed.

The primary variable factor for these experiments is the data set used to
drive the experiment. This data set represents a simulated set of radar ob-
servations. These data sets are of finite length. The length,number of sim-
ulated emitters and radar observation frequency over time1 are the main
variable factors in the data sets.

To perform each of these experiments the simulated rate at which data ar-
rived in the system was fixed at a value which was high enough to prevent
data starvation when running the experiment on the largest reasonable
processor grid. This meant that the speed-up for a grid of size N could be
measured simply by dividing the time taken for the grid of size 1 by the time
taken by the simulation of the N sized grid.2

1Radar system reports per simulated time unit
2Performing experiments in this way was intended to give a base-line set of results of the
same form as those derived from the CAOS system's implementation of Elint [Schoen 86]
and of the Lamina implementation of Airtrac, another application [Nakano 87]. For the
reasons mentioned in this section this might not be a good base-line for comparison.

4-156



It should be noted that these early experiments are open to some criticism
as being unrealistic. They represent the speed-up for given programs un-
der some fixed conditions. The conditions that are fixed may not be reason-
able. For instance, if the program being run was merely a parallel imple-
mentation of Quicksort then these would be reasonable experiments.
Unfortunately, because the implementations of Elint are intended to be real-
time1 systems it is not realistic to load the system in this way. The problem-
solving behavior of the system is sensitive to machine load. Systems run-
ning with smaller numbers of processors will be more heavily loaded. They
may, therefore, spend a lot of time queue thrashing.

For this reason it is now known that these experimental results should not
be taken at face value. More satisfactory experiments have been devised, in
which the experiment is run for a given number of processors with the data
rate being varied until the latency of the output traces is constant over time.
This means that the maximum sustainable data rate without increasing
latency in the system's outputs is the preferred measure of the speed-up for
these systems.

4.3.1. Experiment 1
The Fusion Plasma requires a temperature of 500 million degrees, but I forget
whether that's Centigrade or Absolute.

-Overheard by Arthur H. Snell, Oak
Ridge National Laboratory.

This experiment was intended to be a simple cross comparison experiment,
performed by all of the systems. Its data set was a simple, and quite small
one, which contained observations of sufficient variety to exercise all of the
system's required behavior.

The speed-up figures produced showed a peak speed-up for the system of
about 4.5X for sixty-four processors, with the speed-up trailing off quite
sharply. This was disappointing.

One of the problems with this experiment was that the data set was varied
in the frequency of input data for the system over time. It was sparse at the
beginning, heavy in the middle and sparse at the end. This resulted in the
system being data starved near the beginning of the simulation and then
flooded in the middle.

Although such spikes in input data are entirely characteristic of real data,
this extra variable factor was thought to be too difficult to factor out, in order
to arrive at a realistic speed-up figure. If the system is lightly loaded then
not much speed-up is needed. For this reason all subsequent experiments
have been and will be performed on data sets that have a constant frequency
of input data.

l"Real-Time" is used here in the sense that the system must cope with an unbounded con-
tinuous stream of data, whilst delivering results reasonably promptly. It is not intended to
refer to those real-time systems where guaranteed response times might be required.
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The most important thing to conclude from this result is that we had much

to learn about how to conduct these experiments.

4.3.2. Experiment 2

This experiment was designed to compensate for the variability found in the
data set used in Experiment 1. The data set had a constant frequency for
input data over time.

This experiment showed that the peak speed-up had increased to about 7X,
which was reached after sixteen processors. This result was somewhat
better than that from Experiment 1, supporting our hypothesis that the
shape of the input data was affecting our results. Analysis of the simula-
tor's instrumentation indicated that the limiting factor in the parallelism
detected was probably a bottleneck on a particular node representing a clus-
ter of emitters. It also showed that even if all bottlenecks were eliminated,
so that all pipes were balanced, a major limiting factor in the performance
of the system was that there wasn't enough parallelism at this grain size
available in the data set for this system to exploit.

4.3.3. Experiment 3

This experiment was intended to determine how efficiently the simulated
hardware architecture was being used and thus show where effort would
best be expended to speed up the system if the application could not be
changed structurally. To achieve this Experiment 2 (see Section 4.3.2) was
repeated a number of times but for each iteration the simulated speed of the
processor was varied. This gave speed-up figures for processor perfor-
mances which were 2, 4 and 8 times the speed of the processor simulated in
Experiment 2.1 All of the speed-up figures produced were then normalized
against the case of Experiment 2. A significant reduction in the speed-up of
the system would have indicated that the increasing performance of the
processor was swamping the communication hardware, thus indicating
that time and effort would better be spent on improving communication per-
formance.

It was found that the normalized speed-ups matched each other very
closely. This is taken to indicate that, if such a machine were to be imple-
mented for Poligon programs, effort spent on improving the processor's
performance or in optimizing the program would probably be rewarded by
close to linear speed-up.

4.3.4. Discussion of Experiments: What we have learned
Experience is the name everyone gives to their mistakes.

-Oscar Wilde, "Lady Windermere's
Fan"

1For each of these experiments the simulated input data rate was also increased so as to
factor out this change.
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As has already been mentioned the experiments on these systems are in
their infancy. It is essential 'or the reader to note, therefore, that these re-
sults should be taken as nothing more than indication of where our re-
search is leading us, rather than hard and fast statements about the per-
formance of these systems.

We have, however, learned quite a bit in the execution of these experiments.
The more important of these lessons are listed below.

* Getting useful speed-up out of these systems, at least given the cur-
rent level of our understanding and methodologies, is very difficult.
The speed-ups shown for the experiments mentioned in this section
may, indeed, have been achievable by very careful coding on a
uniprocessor. These difficulties are characterized mainly by the dif-
ficulty of implementing the program and debugging it and of combat-
ing serial components in the processing.

" Problem-Solving systems such as the ones mentioned in this paper
are significantly more complex than those programs normally im-
plemented to evaluate experimental parallel hardware. Our diffi-
culty in getting results indicates that there is more to getting useful
speed-up for real problems than there is to demonstrating speed-up
for Quicksort programs such as [Deminet 82].

* The domain of Real-time systems is one in which the AI community
in general and. this project in particular has little experience. This
has made implementation of these systems and the analysis of them
difficult. The selection of a different field for research, outside that of
real-time systems, would have alleviated this problem but would have
removed the area of experimentation from an important area of ap-
plication where it is believed that speed-up through parallelism is
both necessary and feasible.

" Real-time systems present a set of problems for performance evalua-
tion so great that it is difficult to formulate easily analyzable experi-
ments and draw worthwhile conclusions from them. These prob-
lems are caused by; the need for continuous data, end effects when
the data is bounded in extent, the difficulty of defining suitable per-
formance measures and Heisenbergian effects i.e. changes in sys-
tem load during speed-up measurement changing the speed-up it-
self.

" Investigation of the amount of "Knowledge Parallelism" has been
limited by the relatively small amount of knowledge available in this
area. New applications are being sought in which more knowledge
is available. This has concentrated the investigation on the extrac-
tion of data parallelism from these systems.

" The data sets for the experiments mentioned above are limited in the
amount of data parallelism that can be extracted from them. To add
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to this problem the Poligon system is sufficiently difficult to simulate
that experiments with significantly larger data sets are probably not
feasible.

" The immediate conclusion that one is led to by these results is that a
relatively simplistic implementation of a system can lead to speed-
ups of the order of 1oX. It seems to be possible to get higher speed-ups
from such systems but, at least at present, only by very careful coding
and very careful and thorough instrumentation of the running sys-
tem so that bottlenecks can be eliminated.

* So far, it has not been possible to demonstrat.e overall speed-ups of
more than -8X using Poligon. The hypothesis that Poligon's imple-
mentation of Elint will be able to exploit data parallelism as larger
data sets are used remains, as yet, untested, though tentative results
from an implementation of Elint in Lamina (-54X) and Airtrac in
Lamina [Nakano 87] (-80X) give cause for hope, indicating that with
larger data sets there definitely is more paralzidism to extract.

5. Conclusions
There is something fascinating about science. One gets such wholesale returns
of conjecture out of such a trifling investment of fact.

-Mark Twain, "Life on the Missis-
sippi"

This paper has introduced the problems associated with attempts to achieve
speed-up though parallelism for Problem-Solving systems, systems devel-
oped in the Artificial Intelligence field. Numerous applications for such
systems would benefit greatly from being sped-up considerably. Because of
their irregular structure, such systems are shown to be difficult to speed up
through well established means.

The Poligon [Rice 86] system was described. Poligon i an attempt to create
a system which is able to encourage the decomposition of a particular class
of Problem-Solving systems, known as Blackboard Systems, into a form,
which can be efficiently executed by it on a distributed-memory, message-
passing multiprocessor.

The Poligon system has been implemented and an application called
"Elint" has been implemented using it. Lessons learned in tue implemen-
tation of Poligon and the Elint application are detailed.

Experiments are now being performed on the Elint application, both for the
implementation mentioned in Poligon and also for systems called Lamina
[Delagi 86] and CAGE [Aiello 86]. Some preliminary experimental results
are shown. Lessons learned from these experiments are described. Some
of these are as mentioned below.

° It is very difficult to implement both frameworks for concurrent Prob-
lem-Solving and concurrent Problem-Solving systems themselves.
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This is due largely to the difficulty of coping with asynchronous
events, caused largely by these systems being MIMD systems.

" Real-time systems are difficult systems to calibrate for the purposes
of experimentation to evaluate speed-up.

" Modest speed-up has been achieved (-8X). Indications of higher per-
formance (-54X-80X) are thought possible through the exploitation
more data parallelism [Nakano 87].

" The potential for the exploitation of knowledge Parallelism has not
yet been investigated.

" If these results are supported by further work they would indicate
that large amounts of parallelism at this grain size might not be eas-
ily achieved for this type of AI system. Thus, if there is not a lot of
knowledge to apply, if there is not a lot of data parallelism available
and if there are not many alternatives to explore in the application it
may be that a software architecture optimized for a distributed-mem-
ory hardware architecture is not appropriate. This does not mean,
however, that implementation techniques such as data copying and a
message passing metaphor often used in distributed memory sys-
tems are not appropriate for a shared memory implementation, since
they can help to avoid bottlenecks.

Report writing, like motor-car driving and love-making, is one of those ac-
tivities wh.,ch every Englishman thinks he can do well withvut instruction.
The results are of course usually abominable.

-Tom Margerison, reviewingWriting
Technical Reports by Bruce M.
Cooper in the Sunday Times, 3 Jan-
uary 1965
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Abstract

In this paper we discuss Poligon, a skeletal system for the development of concurrent
blackboard based applications, its architecture and the motivation for its design. A number
of experiments have been performed in order to evaluate the performance of Poligon.
Some of these are detailed and the results are shown. Lessons learned in the development
of Poligon are given and conclusions about the performance of similar systems are drawn.

1. Introduction

It is often said that future AI applications will make significantly greater computational de-
mands than the present generation. The Advanced Architectures Project of Stanford Uni-
versity's Heuristic Programming Project [Rice 88b] is investigating this issue, since it has
as its objective achieving computational speed-up for expert systems through the use of
parallel hardware and new, advanced software architectures. This requires the develop-
ment of everything from designs for parallel hardware, which might be appropriate for the
execution of future symbolic programs, through operating system and language concepts to
problem-solving frameworks and eventually mounting applications on them in order to test
the new designs.

Poligon [Rice 86] is one of the problem-solving frameworks developed as part of the Ad-
vanced Architectures Project. In Section 2, we discuss Poligon's architecture as a design
for a high-performance, concurrent blackboard system aimed particularly at the problem
domain of soft real-time problems, and what motivated this design. Section 3 discusses the
applications mounted on the Poligon framework and experiments performed on the Poligon
system to measure its performance. Section 4 presents the results of these experiments and
an interpretation of them. We conclude in Section 5 with a number of the lessons we have
learned in the process and pointers for future research.

2. The Poligon Architecture

In this section we briefly discuss the architecture of the Poligon system. A more detailed
description of the design rational for Poligon can be found in [Nii 88]. Because of space
constraints, it will be assumed that the reader is conversant with the terminology of Black-
board Systems [Engelmore 88], though no deep knowledge will be assumed.

When we started the Advanced Architectures Project we had a hunch that the Blackboard
problem-golving architecture [Nii 86] might offer a basis for the efficient exploitation of
concurrent hardware. This was because the blackboard model appeared to have concur-
rency built into it. Why this is, in fact, not the case is explained in [Rice 88a]. The pri-
mary reasons why the blackboard model of a collection of simultaneously cooperating ex-
perts cannot develop the parallelism that one might expect is that the blackboard model itself
assumes effectively infinite bandwidth with which the experts can see any part of the
blackboard that might be of interest. It also assumes that experts do not get into one an-
other's way whilst solving the problem. In practice a knowledge source can only see a
small segment of the blackboard at any one time without degrading the performance of the
system unacceptably. Similarly, the experts are dependent on one another, they must often
wait for the results deduced by other agents and can be confused by updates being posted at
unexpected times or in surprising orders. We are, however, unaware of a better architec-
ture for concurrent problem-solving than that of Blackboard systems.
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Although a number of other research efforts have looked at concurrent blackboard systems,
these have concentrated primarily on either the aspects of distributed, concurrent problem-
solving, such as [Lesser 83] or on coarse grained parallel systems, such as [Fennell 77],
[Aiello 86] or [Ensor 85]. Poligon is a finer grained system than these, directed particu-
larly at gaining speed-up through parallel execution.

Rules Node

Processing Element

Rules Node

Rules Node Node Rules

Figure 1. The Organization of the Poligon Blackboard. Rules are distributed over
the network of processors and are attached to the blackboard nodes so that they can watch

for modifications made to the slots in which they are interested.

The normal, serial implementations of the blackboard metaphor use a scheduling mecha-
nism to cause one rule to fire after another. In parallel systems it is crucial that the pro-
grammer eliminate serial components, since this limits speed-up. 1 The main motivation of
the Poligon system was to find a way to eliminate the serializing aspects of the blackboard
model. We viewed this as doing the following:

• Eliminating the scheduling mechanism and finding ways to support concurrent rule ac-
tivation all across the blackboard.

• Optimizing the design for distributed-memory, message-passing hardware, which
should be able to deliver the best performance for large numbers of processors (of the
order of hundreds to thousands.)

• Distributing the knowledge base over the blackboard so that there would be no seri-
alization in the access to the blackboard from the executing knowledge.

" Designing the system so as to allow it to be highly compilable. It was clear from the
outset that a considerable portion of the expense of existing AI systems is due to the
fact that they are optimized for easy modification and debugging, rather than high run-

1Speed-up can be viewed as the ratio of the system's speed using N processors to its speed using only one.
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time performance. The resulting system, therefore, had to be designed so as to be able
to be compiled efficiently yet still be intelligible and debuggable during the development
cycle.

As these ideas progressed we developed the notion of a blackboard consisting of active
nodes, tightly associated with the knowledge relevant to them.

A very simple scheme was developed for invoking the knowledge that had been distributed
to the blackboard nodes: rules are activated as daemons as a result of modifications to the
slots of a node (see Figure 1).

The distributed-memory hardware model, on which the Poligon system was to operate had
the property that each processor was effectively a uniprocessor system. This meant that if
we viewed the blackboard with a "Node as a Process/Processor" model then we would lose
potential parallelism due to being able to execute only one piece of code (rule) at a time for
any given node.

Update

Opdate

Figure 2. Updates to Poligon nodes cause concurrent rule execution, which them-
selves cause further updates. This implicitly forms pipes on the blackboard as data flows

up or down the abstraction hierarchy.

What we needed, therefore, was a mechanism to allow the activation of multiple rules for
any given blackboard node. This caused us to develop a model of Poligon which was as
follows: "A blackboard node is a process on a processor, surrounded by a collection of
processors able to service its requests to execute rules." It can easily be seen that this
model is very close to a distributed object system model. This is by no means a coinci-
dence. The underlying hardware system on which Poligon was implemented was a con-
current, distributed object oriented system [Delagi 86b].

The model expressed above is not without problems. In order to minimize the probability
of a node being locked for a long period, which would delay remote access to it, as much
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processing is done in the remote rule invocations as possible1. This means that, when the
rules execute, they have to do so in the context of a snap-shot of the solution state as it was
when the rule was invoked (see Figure 2). Remote reads to other nodes,,even the invoking
node, are expensive and one cannot guarantee that things haven't changed by the time that
the result of the read has been returned.

This led to the development of the idea of a Poligon node as being an agent capable of eval-
uating its own performance. Mechanisms had to be included so as to allow the system to
be able to assess any request to modify its local state and to decide whether to perform the
update, or what else to do instead, on the basis of its own view of how it is progressing
towards its goal of solving the problem.

3. Experiments on Poligon

In this section we briefly describe the experiments performed on the Poligon system to
date. Two applications have been mounted on Poligon: Elint, a soft real-time situation as-
sessment problem and ParAble, a diagnostic application for particle accelerator beam-lines
[Selig 87]. The experiments with the Elint application have now been completed, whereas
those on the ParAble system are in their infancy, so only the Elint application will be con-
sidered here. A more detailed treatment of the Elint experiments can be found in [Nii 88].

The Elint application encodes knowledge used to interpret the radar emissions made by
planes that are received by ground-based tracking stations distributed across the country.
Because these tracking sites are passive devices, they can only detect the bearing and spec-
tral characteristics of the radar emissions. Between them, it is their responsibility to deduce
a position, course, identity and intention for any aircraft traveling through the monitored
airspace. The Elint application simulates a central machine that integrates reports from
these detection sites in order to achieve the overall goals mentioned.

The important characteristics of the Elint problem were:

A continuous stream of input data.
No a priori knowledge of the behavior or number of the aircraft being tracked.
The need to emit periodic reports capturing the system's evolving view of the solution.

The Elint problem was chosen both because it was non-trivial and was in a class of prob-
lems, for which blackboard systems had already been used, and also because it was hoped
that parallelism would be readily available. It was anticipated that parallelism could be ex-
tracted from the concurrent execution of knowledge on any given part of the solution space
and from the potentially large number of independent elements in that solution space, i.e.
aircraft.

The application was taken from a serial implementation and was not restructured so as to be
better suited for parallel execution. The blackboard was, however, composed of three dis-
tinct layers in the abstraction hierarchy. Data flowing from one level to the next allowed
pipes to be formed that were three stages long.

IThere are no user accessible locks in Poligon. Poligon nodes become locked (enter critical sections)
during slot reads and updates, which are cheap operations. The Poligon architecture is such that deadlock
will not happen as a result of system action, though the user can still write a program that will live-lock,
e.g. two nodes each waiting for one node to update the other will wait for ever.
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Perhaps the most important lesson that we learned from performing these experiments was
to find a way to measure the relative performance of concurrent real-time systems. The
best way that we found to do this was to pump data into the system at a given rate, which
was under the control of the user, and examine the system's output-over time. There is a
measurable time between the time that data comes into the system and the time that any as-
sociated reports come out of the system. If this time difference increases on average over
the course of a run then the system was not able to keep up with the rate at which data was
being pumped into it. The experiment was then performed again with the data rate turned
down until the report latency did not increase. This gave us a measure for the system's
throughput, which we took to denote its peak performance.

The experiments that were performed were intended to measure a number of different as-
pects of the system's performance:

• The speed-up that the Poligon system could deliver.
* The peak throughput of the system.
• The ability of the system to exploit large knowledge bases.
" The granularity of the system.

Experiments to measure these are described in Section 4.

4. Experimental Results

The space available for this paper does not allow a full explanation of the experimental re-
sults, so the interested reader is again advised to refer to [Nii 88] for more details. It is
hoped that the treatment here will be sufficient to give the gist of what we have learned.

It should be noted here that wherever reference is made to absolute times, these are mea-
sured in terms of the performance of the simulated Lardware on which the Poligon system
runs [Delagi 86a]. Each processing element of this machine is of about the performance of
a TI ExplorerTM II+ processor.1

4.1. Measurement of Speed-up and Throughput

In this experiment two different data sets were used. One was designed to allow the
Poligon system only to create one pipe in the solution space, the second allows Poligon to
create four pipe-lines; it was four times as dense2. The combination of these two results
allows us to do the following:

* Measure the peak throughput for the larger data set.
" Determine the contribution to speed-up due simply to pipe-line parallelism.
" Compare the results from the two data sets so as to be able to get a measure of the abil-

ity of the system to exploit parallelism in the source data, i.e. data parallelism.

The results from the two data sets are shown in Figure 3.

1Explorer is a trade mark of Texas Instruments Corporation.
2The small data set can be thought of as representing only one aircraft, the second had four. The data was,
therefore, no more complex, there was just more of it.
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Figure 3. A graph showing the speed-ups derived from the large and small data

sets plotted against the nunber of processors used.

In this experiment we learned the following:

• The peak speed-up shown in this application due to pipe-line parallelism was 3.6. This
showed that although the length of the pipe was three, speed-up was greater than three
because of the concurrent execution of rules by the different stages of the pipe.

* The peak throughputs measured from the two data sets were not significantly different.
This indicates that Poligon was able to achieve an almost linear increase in speed-up as
the prob'.m size of the data set increased, an important result.

• The peak throughput for the system as measured from the larger data set was about
340ts per signal data record. Because of the linear increase in performance with data
set complexity it is assumed that with more complex problems higher performance
could be achieved. By comparison the Elint application, when coded to run in the AGE
blackboard system took about 3.7 seconds to process each piece of signal data.

4.2. Measurement of Poligon's Ability to Exploit Large Knowledge Bases

In this experiment the Poligon system was tested using the small data set used above. The
Poligon framework was modified so that, whenever a rule was invoked, N rules would be
invoked, rather than just one. N - I of these rules had the special characteristic that they
performed almost all of the processing required except for any blackboard modifying up-
dates. This gave a measure of the system load if the knowledge base was N times larger,
whilst still giving the right behavior for this application.

The results from this experiment are shown in Figure 4.
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Figure 4. A graph showing application throughput slow-down plotted against the
number of rules being fired for each rule-invoking event.

In this experiment, if the system were able to exploit parallelism in the-knowledge base to
the full, one would expect that the system would not slow down at all as new knowledge
was added, i.e. the line shown in Figure 4 would be horizontal. If, on the other hand, the
system bogged down completely as more knowledge was added one would expect that the
result would be worse than linear slow-down, that is the plot would appear above the
"linear slow-down" line. As can be seen easily from the graph, Poligon's performance
was better than linear. In order to perform four times as much work it took only 2.2 times
as long. This means that, as long as there are sufficient computational resources, the
Poligon system delivers good performance for a knowledge base whose size is at least up
to four times that of the Elint application.'

4.3. Measurement of the Granularity of Poligon's Rules

In this experiment some of the internal mechanisms within Poligon were timed in order to
get some empirical measure of the granularity of the system.

Within a blackboard system a number of mechanisms are of crucial importance to the per-
formance of the system. Amongst these are slot reads, slot writes and rule invocation. 2

In order to determine the costs of these operations they were performed repeatedly in a
manner which allowed the individual costs to be measured with some precision.

The results of these experiments are as follows. It should be noted that all of these results
neglect any communication overhead, so they are only representative for local operations.

Slot reads take 1.36 + 0.94n pIs, where n is the number of slots being read at once,
Poligon supports a form of multiple slot read operation.

1 In AGE, the Elint knowledge base was composed of about twenty knowledge sources, each having about
three rules.
2Node creation is another important aspect, which was not measured in this experiment.
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" Slot updates take 18 + 53.7n pts, where n is the number of slots being written. Poligon
allows arbitrary user code to be executed during the slot update operation, so this is a
representative figure taken from the Elint application. This is for the case of no rules
being associated with the slots being updated.

* The overhead cost of starting up a rule's execution is about Ims per rule invoked.

A substantial part of the time taken performing these operations could be optimized consid-
erably. For instance, a figure of about 500gis for rule invocation could relatively easily be
achieved in a real system and more than this improvement could be expected for a system
which allowed specialized microcode or similar efficiency tuning. This shows that there is
a lower bound to the granularity that the user can expect to achieve. For computations tak-
ing less than a few milliseconds it may not be worth starting up a rule to perform the com-
putation, the cost of parallel execution would be in excess of the serial execution time.

5. What We have Learned

We have learned a number of lessons from this project, some of which were counter to our
intuitions.

" Our intuition told us that programming a concurrent blackboard system would not be
too hard because of the assumed implicit asynchrony in serial blackboard systems. We
found this not to be the case. We found the programming task to be difficult and, we
believe, a reconceptualization of existing problems will be required in order to port
them for efficient parallel execution. The difficulty of implementation of applications is
due largely to the divergence of implementations of serial blackboard systems from the
pure blackboard model in order to make implementation and programming more man-
ageable as was mentioned in Section 2 and is covered more thoroughly in [Rice 88a].

" We found that the Poligon system and architecture itself performed fairly well. Al-
though programming the system was not trivial, the Poligon system provided a useful
abstraction model that allowed the development of an application in a blackboard-like
manner that still gave the correct answers and acceptable performance.

" We had thought that parallelism in the knowledge base would be crucial to the achieve-
ment of high performance. In the applications that we used, knowledge proved to be
sparse and the pipe-line parallelism that resulted from it delivered only a factor of three
in speed-up. The small amount of speed-up from pipe-line parallelism was due to the
short length of the pipes, the lack of applicable knowledge and the difficulty in balanc-
ing the pipes. Most of the parallelism seen in the applications implemented in the Ad-
vanced Architectures Project was derived from the data, not the code. The limit to the
length of the pipes derived from the application was not one that resulted from the
structure of the problem itself, but rather came from the fact that the application was
reimplemented for Poligon from the AGE implementation, not reformulated.

" When we started the project our intuition told us that the significantly greater cost of
communication relative to computation would bias the programmer in favor of doing as
much as possible locally before a message was sent. It turned out that doing this in-
creased the granularity of the system and restricted parallelism. We found that, al-
though communication is expensive, as long as data keeps flowing along a pipe the
price that is payed is in latency, not in speed-up. The fact that processes are not held up
by communication is a result of the non-blocking message sending ability of the hard-
ware. Thus, fine-grained systems are likely to be significant for achieving good per-
formance from large multiprocessors but the increased latency due to distributing the
work could have an adverse effect on real-time performance.

" We learned that simulation of multiprocessors is expensive. A number of projects are
interested simply in the difficulties caused by the asynchronous behavior of concurrent
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systems. Such projects are able to use a simple model for their implementations on ex-
isting hardware. We, on the other hand, wanted to measure the performance of our
software on the hardware we were developing precisely in order to refine both our
hardware and software designs. This is computationally a very expensive task and has
proved to be a major limiting factor on the work that we have done. Having said this,
however, it should be noted that we are confident that we have achieved better results
and have gained deeper insights than we would have done if we had concentrated on
building real hardware.
Resource allocation was found to be a significant factor in delivering high performance.
The fact that blackboard nodes are often very long-lived means that an even load bal-
ance can easily be disrupted by a.few busy nodes. In the experiments reported here the
allocation of processes to processors was done randomly. Other experiments in the
Advanced A, ehitectures project have shown that, compared to the ideal, perfect load
balanced st 't. 1, even with very careful site allocation the Elint application lost 30% in
efficiency anu delivered 30% less speed-up than in the perfectly load balanced case.
This could not be recovered through the use of more processors [Delagi 88].

6. Conclusions

In this paper we have described Poligon, a blackboard framework designed to operate on
distributed-memory multiprocessors. We have described experiments performed on it,
showpnthe results and discussed the conclusions that can be drawn from them and men-
tioned some lessons that were learned along the way.

We have shown that the Poligon system can deliver a speed-up for the Elint application of
nearly twelve, with near linear speed-up gain with increasing problem complexity. We
have also shown significantly better than linear slow-down as a result of increasing knowl-
edge base complexity. We -are confident, therefore, that given a larger problem Poligon
could deliver significantly more speed-up than this.

From our work we can conclude that data parallelism is likely to be the most important
source of parallelism in the foreseeable future, at least until truly huge knowledge bases are
developed. This requires that concurrent problem-solving systems should be not only able
to exploit data parallelism but be able to do so in a manner which allows the rapid develop-
ment, easy maintenance and modification of knowledge bases and encourages the devel-
opment of softwa: that is not brittle when knowledge is added or removed or when the
system meets circumstances that were not anticipated by the programmer. Poligon is a
possible first step in this direction.
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Abstract

The Advanced Architectures Project at Stanford University's Knowledge Systems
Laboratory seeks to gain higher performance for expert system applications through the
design of new, innovative software and hardware architectures. This research is concen-
trating particularly on the use of parallel machines to gain speed-up and the design of the
software to exploit emergent parallel hardware architectures. The project is described, de-
tailing its goals and the work performed in the pursuance of those goals. A brief descrip-
tion is given of each of the components of the project and a complete bibliography is given
of the publications produced by the project.

1. Introduction

The Advanced Architectures Project1 is a project which has been running for a number of
years at Stanford University's Knowledge Systems Laboratory. The project is large and
has a number of components, which have been documented at length. The project as a
whole has never been drawn together in one document, so the purpose of this paper is to
describe the Architectures project, and to give a taste of the individual sub-projects, which
have kept us so busy for so long. A large number of publications have emerged from the
project so, we will also take this opportunity of giving a full bibliography of the work we
have done so that the interested reader can follow up on any intriguing topics.

The AAP straddles a number of areas of research and because of this does not fall easily
into the sphere of interest of any one camp. A certain amount of work has been done on
the parallelizing of expert systems, most notably by Gupta [Gupta 86]. Similarly, there are
machines on the market that are similar in some respects to the machines that we have been
designing, most notably the Ametek machine. This paper does not in any significant way
relate the work on the AAP to other work in these fields. This is done copiously in the pa-
pers cited below. The reader should keep in mind, however, that there have not been, to
the best of our knowledge, any projects comparable to the AAP and so it is often very hard
to find a reasonable point of comparison. For instance, considerable effort is being spent
on concurrent image recognition on massively parallel machines such as the Connection
Machine"m. 2

At this point we should make a brief disclaimer. The subject matter for the Advanced
Architectures project is complex and not in the main steam of experience of the AI com-
munity. We are concerned lest the conclusions we have drawn from our work should be
misinterpreted, trivialized or over generalized. It is not realistic to try to do justice to the
full lessons that can be learned from our extensive quantitative experiments in an article as
short as this. For this reason we do not attempt to draw any great conclusions here. The
reader is strongly encouraged to read any of the fifth odd papers that are cited herein so as
to gain a deeper understanding of our work and the lessons we have learned. All of these
publications are available from the KSL and many are also published in other fora. The
reader is, therefore, encouraged to treat this more as a concept or research in progress paper
than as one that has scientific goals.

1The I .oject's real name is in fat "Expert Systems on Multi-processor Architectures", but all of the project
memt.rs ha,e always felt more comfortable calling it either the "Advanced Architectures" or the
"Architectures" project, for short. This seems to capture better the fact that new architectures for both
hardware and software will be needed in order to meet the project's goals.
2Connection Machine is a trade mark of Thinking Machines Corp.
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1. 1. Project Goals

The project's primary goal is to find ways to increase the performance of expert systems
through the use of the new, emergent, parallel hardware designs.

The number of possible implementation strategies for such a project is huge. One has only
to look at the large number of different hardware designs that are .emerging and at the num-
ber of different problem-solving methods to see how combinatorial the problem would be if
we endeavored to investigate all of the reasonable and plausible combinations of architec-
tures. it was decided, therefore, that we could learn a great dealsimply from making a
commitment to one, or at least a small number of different options at each point in the sys-
tem's make-up. We thus decided to take a "vertical slice" through the space of possible
solutions. Clearly we did not intend to investigate any options that seemed non-useful, so
we knew from the outset that, although we could not prove that we had the best design to
meet our goals, our design would nevertheless be at least a plausible architecture for a fu-
ture computational environment.

We viewed the task of implementing concurrent expert systems as being one which was
split into a number of implementation layers. If we could achieve speed-up at each one of
these layers, then we could hope for a substantial overall performance improvement com-
pared to existing AI systems. Our model of the layers into which the project could be split
is shown in Figure 1.

Applications

Problem-Solving Frameworks

Knowledge Retrieval

Resource Management

Programming Languages

Operating Systems

Hardware

Figure 1. The layers of system implementation through which we hoped to
achieve computational speed-up in the Architectures project.

It was originally anticipated that the needs of the apDlications would drive the development
of the problem-solving frameworks and so on dowt. through the implementation hierarchy
shown in Figure 1 until eventually the hardware would be designed under the constraints
passed down from above. In practice, however, this did not happen. Because of the diffi-
culty of finding and mounting an application suitable to our needs and the early availability
of personnel interested in the hardware design aspect, the hardware design went ahead
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more rapidly than the other layers. This resulted in our designs being.more -hardware
driven than application driven. This is not necessarily a bad thing, since, an entirely top-
down design process could easily have resulted in low-level systemrequirements which
were not implementable.

As well as the thrust of the project coming from the bottom rather than the top, the levels of
abstraction actually implemented differed significantly from those shown in-Figure 1.
Figure 2 gives a more realistic representation of what we actually did, as opposed to what
we intended to do.

Applications

Problem-Solving Frameworks

Resource Management

Programming Languages

Hardware

Figure 2. The layers that have actually been tackled in the Architectures project.
Resource Management is shown in small type because it is a recent addition and most of

our work has been done without the help of this layer.

The Knowledge Systems Laboratory has considerably more expertise in software, than in
hardware department. We decided early on not to build any hardware - there are many
other research groups that could do this better than we. We decided, therefore, to simulate
our hardware. This would allow us to modify our software and hardware designs easily
and allow us to extract the maximum insight with the minimum effort.

The rest of this paper is split into sections which reflect the major layers shown in Figure 2.
In each of these sections the work of the relevant sub-projects will be discussed. Because
of the bottom-up thrust of the project the project's components will be discussed in a bot-
tom-up order. This will also reduce the number of forward references made, since discus-
sion of the higher layers will inevitably have to refer to the substrates on which they are
implemented.

1.2. Personnel

This project has employed a large number of people over the years and it seems appropriate
to name them all here, since otherwise they might only appear as authors referenced in the
bibliography.

Ed Feigenbaum, Bob Engelmore, Penny Nii, Bruce Delagi, Harold Brown, Hiroshi
Okuno, John Delaney, Byron Davies, Hirotoshi Maegawa, Nelleke Aiello, James Rice,
Nakul Saraiya, Sayuri Nishimura, Eric Schoen, Greg Byrd, Max Hailperin, Russel
Nakano, Masafumi Minami, Chris Rogers, Alan Noble, Jean-Christophe Bandini, Manu
Thapar, Pandu Nayak, Jerry Yan and Sam Hahn.
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2. Hardware

As Was mentioned above, hardware design led the way in the Architectures project. In this
section we discuss a little bit of the motivation for the hardware designs and briefly de-
scribe both the current generation of hardware designs on which we are. working and the
simulator we are using.

2.1. Simple and Helios

Figure 3. The Simple system provides a toolkit from which to build circuits to
be simulated, a collection of probes to connect to the circuit and a set of instruments to

connect to the probes.

The hub of all of the work done on the Architectures Project has been the circuit simulator,
upon which everything else is built. This simulator is called Simple. It is an event-driven
simulator, designed to allow the user to design and specialize digital circuits in a simple and
modular way, using a circuit design tool called Helios. A sophisticated set of instrument
tools allow the user to design and specialize simulated probes which can be connected to
the circuit while it is running. This allows the connection of a number of instruments to the
probes that permit the user to see the behavior of the circuit as it operates without interfer-
ing with the behavior of the system. We like to view this model as one of a laboratory
workbench equipped with collections of instruments, probes and circuit building compo-
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nents from which the user can build systems and on which the user can perform quantita-
tive experiments (see Figure 3). More information on this topic can be found in [Delagi
86b] and [Delagi 87].

It was found early on that simulations of the sort we wanted to do would be computation-
ally very expensive. An attempt was made, therefore, to parallelize the simulator itself in
an attempt to bring down the times taken for the simulations, which often exceeded one day
in duration. This resulted in AIDE, a distributed version of Simple [Saraiya 86].
Unfortunately, we were unable to achieve any speed-up at all for our simulations, largely
because of the communication bandwidth and latency associated with communicating be-
tween the multiple Symbolics machines we were using via an Ethernet and because the
simulator, being event-driven required frequent synchronization on the event queue, which
serialized the processing.

2.2. CARE

The Simple simulator mentioned above was used to design and build what we refer to as
the CARE1 machine and simulation system [Delagi 88a] (see Figure 4). The CARE ma-
chine is that simulated machine on which all of the experiments mentioned below have been
performed. The machine's design has a few key features which are worthy of note:

* Dynamic cut-through routing, in order to optimize network throughput [Byrd 87c].
• Toroidal topology [Byrd 87b].
• Non-blocking message sending, so as to encourage pipe-line processing.
* Communications network with alternative paths between points, so as to reduce

communications problems due to busy communication paths.
" A separate communications controller, in order to support operating system func-

tions and to implement the non-blocking send functionalitymentioned above.

The work on the CARE sub-project has focussed mainly on the design of inter-processor
communication networks, as is appropriate. This has meant that we have been able to ig-
nore the instruction level behavior of the processors themselves. The application programs
that we run are merely timed as they run between the points at which code fragments cause
communication between processors. Being able to avoid doing register level simulation of
the processors themselves has allowed us to execute much more complex and realistic pro-
grams on our simulated machines. We have therefore traded accuracy in our processor
simulation - assuming that the processing elements will behave much like existing Lisp
Machine processors - in favor of greater realism in terms of the system's performance un-
der the load of real programs.

A number of aspects of system design have not been addressed in detail and the simulations
do not take these into account. Most significant among these, perhaps are the fact that
memory usage, code distribution and garbage collection are not simulated.

The CARE/Simple simulator system is perhaps the most valuable tangible product of the
Architectures project. It is now being used in a number of research departments, both cor-
porate and academic, outside Stanford. Like all Architectures Project software, it is in the
public domain. CARE/Simple will soon be available running under Common Lisp. CLUE
and XI 1 on a number of different platforms.

lThe expansion for this acronym seems to have been lost somewhere in the wash. We think that it has
something to do with the words Concurrent and Array.
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CARE EXAMINER: EVALUATOR QUEUE LOAD
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Figure 4. An example piece of instrumentation from the CARE system. This
one shows the lengths of the task queues on the different processors plotted against time,

3. Operating Systems and Languages

A considerable amount of effort has been spent on the project in working at the operating
system level of abstraction. Curiously, we have written no operating systems. The CARE
machine itself features a dual processor for each processing element. This allows much of
the work of the operating~system, particularly inter-processor communication, to be done
by a dedicated processor in parallel with the execution of user code. The behavior of this
communication processor is coded directly into the simulated hardware.

Amongst the work that has been done in this area has been work on concurrent object-ori-
ented systems, concurrent Lisp dialects, programming models and resource allocation.

3.1. CAREL

CAREL [Davies 86] was one of the first programs written to run on the CARE simulated
machine. It was an early attempt to find a Lisp language interface to the distributed-mem-
ory hardware provided by CARE. It took as its basis Scheme [Abelson 83] and QLisp
[Gabriel 84] and included primitives to allow remote function calls and remote consing. It
was quickly found that, because of the cost of process creation, it was desirable to make
the best use of any processes that were spawned. There was therefore a need to store ap-
plication dependent data in non-ephemeral spawned processes. State of this type was im-
plemented in CAREL as writable closure variables. These process closures could be used
as elements in pipe-line computations or to represent mutable communicating program ob-
jects, for instance to represent real-world objects with state. State, as encapsulated in com-
municating objects, and the idea of pipe-line parallelism have been pivotal in the design of
the other systems developed on the Architectures project.
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The CAREL project was used mostly as a feasibility study and was soon discontinued.

3.2. CAOS

The first implementation of the Elint application, described further in Section 5.1, was
made without the benefit of any problem-solving framework. It was anticipated that the
application could be easily mounted almost directly on the CARE machine and some exper-
iments could be run quickly, which would allow us to learn some importantlessons-early
in the project.

In order to mount the application, a distributed object-oriented system was implemented.
This was done because the CARE system did not, at the time, come with its own
"preferred" object system. The system that was implemented was called CAOS [Schoen
86], a Concurrent Asynchronous Object-oriented System. It was implemented using the
Flavors system supported by the Lisp machines used by the project. It had a number of
key features:

• Each CAOS object was potentially a multiprocess object, though executing on a
single processor, having at least one stack group associated with each CAOS ob-
ject.

" CAOS objects were intentionally large grained. This was because it was anticipated
that the communications network would be the resource most competed for, thus
encouraging the programmer to perform a lot of computation in order to reduce the
number or size of messages sent.

" Message-passing was used as the metaphor for communication in the language ex-
tensions provided by CAOS.

" A large number of different message sending primitives were defined, including
non-blocking sends that did not require a reply from the target of the message,
sends that returned futures to the values returned by the targets and send operations
which blocked immediately in order to wait for a reply from their targets.

The CAOS system proved to be too expensive to use for our future experiments. Contrary
to our intuition, the communications network proved to be the least loaded of the CARE
machine's resources during our experiments on CAOS. The computational expense of
supporting its complex object model caused the granularity of the resultant computations to
be too large.

3.3. LAMINA

Lamina [Delagi 86a] is the object system that was designed after the lessons were learned
from the CAOS experiments. It was originally intended to provide a very small, light-
weight layer on top of the CARE machine so that distributed object-oriented programs
could be implemented efficiently. A significant part of the motivation for the design of
Lamina was the desire to reduce the overhead suffered by the CAOS system in terms of as-
sociating large stack groups with each of the CAOS objects. Lamina introduced the idea of
objects with restartable, rather than resumable code segments, which do not require stacks
to preserve their state when they are not running. Since its first appearance Lamina has
been developed extensively and, although still small and light-weight it now provides a
platform for the development of computational models for functional and shared-variable as
well as object-oriented programming.

Lamina has been used to implement a number of programs, both for direct implementations
of the two real-time expert systems being investigated (see Section 5), AirTrac and Elint,
and also a number of numerical programs. Lamina is now the preferred core programming
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system for the CARE machine and applications in Lamina have consistently shown the

highest performance of all programs running on the CARE machine.

3.4. Inter-Processor and Inter-Process Communication

A considerable amount of work has been performed on the investigation of different mech-
anisms for inter-processor and inter-process communication. For distributed-memory ma-
chines we believe that the efficient distribution of work for large applications is crucially
linked to the efficient implementation of multicast communication [Byrd 87a], [Byrd 88b].
Although the principal thrust of the project has been towards the development of dis-
tributed-memory hardware, the fact that the CARE simulator can also simulate shared-
memory machines has allowed the inyestigation of the relative performance of these two
distinct classes of machines and the relative performance and appropriateness of shared-
variable and message-passing/object-oriented programming models [Byrd 88a]. Current
work is focussing on the design of hardware that might provide efficient support for both
the shared-variable and the message-passing programming models [Byrd 89].

3.5. Load-Balancing

40

Figure 5. Load-balancing.

We have started to examine load-balancing problems (see Figure 5) within the context of
the AAP "vertical slice." [Hailperin 88] In particular, this work is focusing on a load-bal-
ancing method intended to migrate Lamina objects in large (thousands of processing ele-
ments) CARE multicomputers in order to improve the performance of soft-real-time signal-
interpretation systems such as Elint and AirTrac (see Section 5).

Without load balancing, only a lightly-loaded multicomputer, which has cause to create
processes dynamically, can in general achieve real-time performance. The focus of the
work is on how to achieve global load balancing, which would be an attractive solution to
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this problem, as it would allow the effective use of massively-parallel ensemble architec;
tures for larger soft-real-time problems.

The challenge is to replace quick global communication, which is impractical in a mas-
sively-parallel system, with statistical techniques. In this vein, a novel approach to decen-
tralized load balancing is being investigated based on statistical time-series analysis. Each
processing element estimates the system-wide average load using information about past
loads of individual sites and attempts to equal that average. This estimation process is
practical because the soft-real-time systems in which we are interested naturally exhibit
loads that are periodic, in a statistical sense akin to seasonality in econometrics.

A load-balancing system for Lamina/CARE has been designed using this load-characteriza-
tion technique, and its implementation and experimentation with it in the context of the
ELINT and AIRTRAC applications have begun.

3.6. Concurrent and High Performance Lisp

In an attempt to understand the behavior of the Lisp language on shared memory machines,
work was done on the QLisp system [Okuno 87b]. Although this work was not used di-
rectly by other parts of the architectures project, it investigated some of the constraints on
paralleliiing production systems by studying the OPS5 language.

In the search for higher performance symbolic computation, work was also done on the
development of high-performance Lisp interpreters [Okuno 87a]. This work was also not
used directly on the Architectures Project, since all of the code we use in our experiments
has been compiled.

4. Problem-Solving Frameworks

One of the key layers in the strategy of the Architectures project was that of problem-solv-
ing frameworks. Faced with a large number of different problem-solving models the pro-
ject committed itself at an early point to the Blackboard problem-solving model [Engelmore
88]. This was not an entirely arbitrary choice. The blackboard metaphor had already been
applied successfully in the area of real-time signal processing [Nii 82], the selected problem
domain for the AAP. It was also anticipated that the blackboard metaphor would help us to
extract parallelism from the application in the way that the problems were formulated be-
cause the metaphor has a model of asynchrony built into it. For reasons detailed in [Rice
88a] the blackboard model turned out not to be as parallel as we might have hoped, but we
still know of no better one for concurrent execution.

The development of problem-solving frameworks took two distinct courses. First was the
development of a fairly conservative, concurrent implementation of an existing blackboard
system to run on existing shard-memory machines. This was the Cage system described
in Section 4.1. The second prong of the attack was to rethink that blackboard metaphor
from scratch in the hope of achieving really high performance on distributed-memory mul-
tiprocessors, such as the CARE machine. This resulted in the Poligon system described in
Section 4.2.

Three generations of papers have been produced describing the strategy of the Architectures
project, the Cage and Poligon systems as they evolved, and the experimental results pro-
duced by these systems [Nii 86], [Nii 88a] and [Nii 88b].
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4.1. Cage

Cage (Concurrent AGE) [Aiello 86] is a reimplementation of the AGE [Nii 791 blackboard
system also developed at the Heuristic Programming Project at Stanford. The central idea
behind Cage is that the blackboard model provides a certain- amount of parallelism by its
very nature. It should therefore be possible to exploit this parallelism without any major
redesign or rethink for the problem-solving model. Cage is, therefore, an implementation,
which is designed to allow the concurrent execution of a blackboard system through the
concurrent execution of the knowledge sources and rules in the application (see Figure 6),

Blackboard Knowledoe Base
KS

Update event Rule
Nod NdK

N N N 1;

_ _ _ Rule

Scheduler

Figure 6. The Cage Architecture. Update events are perceived by the scheduling
component and collected in a global event queue. The scheduler selects the knowledge
sources that are interested in any given event and can execute them in parallel. These

knowledge sources in turn inspect the blackboard and perform updates that are seen by the
scheduler.

At the outset it was not known how difficult it would be to program such a system and how
much performance could be expected, but it was thought that such an architecture might
well be suitable for the current generation of multiprocessors, which mostly have a shared-
memory design. Blackboard systems are typically implemented using a central, shared
database to represent the blackboard. The match between the shared blackboard and the
shared memory resource seemed to be worth investigating.

The Cage system was implemented first on a simple emulator, which emulated the func-
tionality of a QLisp implementation without paying the costs of detailed simulation. It was
later ported to run on the CARE simulator, using an implementation of the QLisp language
built on top of the Lamina shared-variable programming interface [Saraiya 88].

The Elint application, described in Section 5.1 was mounted on the Cage system and exper-
iments were performed on it. These are detailed in [Aiello 88] and [Rice 89a]. The Cige
system has shown that blackboard programs can, indeed, be run in parallel in a relatively
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simplistic manner. The performance of Cage, however, is restricted by a number of factors
[Nii 88b]:

" its implementation, which was not highly tuned;
" its architecture, which exhibits significant contention for global shared resources

such as the event queue;
" the QLisp substrate, on which it is built, and
" the shared-memory hardware upon which it runs.

Thus, althoughthe Cage architecture is a viable architecture for existing shared-memory
hardware systems, because of the close link between the Cage programming model and its
underlying hardware, we do not anticipate that future concurrent expert system tools will be
built much like Cage. We believe that the trend of multiprocessor design is broadly away
from shared-memory machines and towards distributed-memory designs because of their
greater ability to scale. Software design is likely to track this trend.

4.2. Poligon

The expectation that the next generation of multiprocessors, for reasons of simplicity, per-
formance and cost, are likely to be distributed memory machines required a rethink of the
blackboard model before it could be mounted on such a machine, in a manner likely to de-
liver good performance. Poligon [Rice 86a] and [Rice 86b] was developed-in an attempt to
address these needs. Poligon took the view that processors were going to be cheap and
plentiful and thus that if necessary it was quite acceptable to allocate one processor or more
to each node on the blackboard.

First the serializing, centralized control mechanism of conventional blackboard systems
was discarded. Distributing the nodes of the blackboard over the processor network al-
lowed the knowledge base to be spread over the blackboard as well, so as to eliminate any
performance bottleneck due to, the communication costs between the knowledge base and
the blackboard. The simplest available rule invocation mechanism was selected, so as to
maximize performance; rules were directly attached to slots of the nodes on the blackboard.
A modification to a slot, to which a rule was attached, resulted in that rule being invoked.
Rule invocations were spun off into different processes on different processors for execu-
tion, thus minimizing the length of the critical sections on the processors holding black-
board nodes and allowing multiple, simultaneous rule invocations for the same modified
blackboard object (see Figure 7).

In practice, these mechanisms did indeed result in good performance, but they also resulted
in significant problems. Lots of uncontrolled asynchronous processes all reading and
writing things in a shared database are bound to cause problems when it comes to getting a
coherent or correct answer. Extra mechanisms had to be implemented, which allowed the
blackboard nodes to have "goals" and the ability to evaluate their own performance with re-
spect to the overall goal of the system. This allowed the blackboard nodes to have the final
decision about whether to perform any modification operation attempted by a rule. The re-
sult was a sort of distributed hill-climbing behavior. Nodes iterated towards a good solu-
tion.
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Rules

Update

Figure 7. The Poligon Architecture. Updates on the blackboard are observed by
rules which watch speciic slots of blackboard nodes. These rules can fire in parallel caas-

ingfurther updates to the same or other nodes. This flow of updates from one node to
another implicitly forms pipes. which increase the parallelism realizable by the system.

These mechanisms did not come without associated costs in terms of granularity. Although
the Poligon system delivers very high performance when compared to other blackboard
systems such as AGE, it nevertheless significantly lacks the performance provided by an
application written directly in Lamina. Poligon, therefore, provides a fairly general concur-
rent implementation of the blackboard problem-solving model with all of the advantages of
abstraction and modularity that this confers. It does so, however at a price. A detailed de-
scription of Poligon's design and implementation can be found in [Rice 89b], which also
describes a number of means by which the performance of Poligon could be improved by
superior compilation if it were to be turned into a production quality system.

The Elint application, described in Section 5.1, was implemented in the Cage, Poligo. and
Lamina systems. The results of these experiments are reported in [Rice 88b], [RiLe ,)a]
and [Nii 88b]. Another application called ParAble, implemented using the Poligon :same-
work, is described in Section 5.3.

5. Applications

As was mentioned in the introduction we expected at the outset that the project would t'e
application driven. In the search for an application domain, which would need significan,
speed-up in order for expert systems to be fielded, and yet held a certain obvious potentia.
for concurrent execution, we picked on the field of real-time signal understanding.
Existing blackboard systems, such as HASP/SIAP [Nii 82] and Tricero [Williams 84] had
shown both that the blackboard problem-solving model was appropriate for this domain
a-d that the performance deliverable using the existing blackboard tools was entirely inade-
quate to field such systems.
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What we needed, therefore, was a problem %hich was complex enough to give us a rea-
sorable model of a real sysiem, and yet simple enough ihat we would not spend too much
effort on the mechanc of its implementation- Contrary to our original intentions of being
application dri, en, the unavailability of a satisfactory application at the star of the project
caused the project to become somewhat more hardware driven than expected. It was
e-entuall) decided tha: %t: %ould focus on a problem called Elint, a system for the unIder-
standing of passive radar signals. This application is described in Section 5.1

After a fair bit of expCrimentation it %,as determined that our ability to exploit parallelism
%,as being constrained b) the problem we were using - it was not sufficiently complex. In
the search for a more kno% ledge-rich and tomputationally intensive application we devel-
oped the AirTrac application. This is described in Section 5.2.

Work has also been done in areas other than that of real-time signal understanding;
ParAble, a s)stem for fault-finding in particle accelerator beam lines has been developed
using the Poligon framewor,. This is described in Section 5.3. A number of numerical or
semi-numerical programs have also been developed during our more hardware-related ex-
periments. These are mentioned in Section 5.4.

5.1. Elint

Blackboard nodes_)

FEmitters

Observations

Input Data.
Figure 8. The Elint Application. Sensor data is abstracted into hypothetical radar

emitters, which are tracked as clusters of emitters.

Elint is a soft real-time sstem for the interpretation of passive radar signals. Data are col-
lected from at number of receiving stations and are integrated so as to allow the system to
tiack radar emitting aircraft as they pass through the monitored airspace. The data are ab-
stracted into h, pothetical radar emitting platforms. These are in turn collected into clusters
of ermitters, which might represent a number of planes or a single plane using multiple radar
systems, as is often the case with modem military aircraft (see Figure 8).
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Eliot was first implemented using the CAOS system. It was originally thought that this
work would take only a couple of months to do. In fact, the complete task - imp!emcnta-
tion, experimentation and analysis of results - took 18 months. We learned early on that
it is bv no means a tri.l matte ,o reimplement an existing, serial application in a parallel
environmefL These initial experiments are detailed in [Brown 861.

Since the CAOS implementation, Elint has been implemented three times; using Lamina
[Delagi 88b] [Saraiya 891 and the Cage [Aiello 881 and Poligon [Rice 88b] [Nii 88b]
frameworks and a number of experiments have been performed on them.

5.2. AirTrac

The development of the Elint application showed us that the amount of parallelism that
could be demonstrated was much more dependent on the application than we had antici-
pated. We had hoped that by extracting parallelism at the different levels of the system's
implementation hierarchy we could gain significant speed-up. We were unable to demon-

strate this. We were able to show, however, that our experiments showed poor speed-up
largely because the application itself had run out of parallelism.

What we needed was an application which would really stretch the hardware and software
we were developing in a realistic manner. In response to this the AirTrac application was
developed [Delaney 201.

The AirTrac problem domain sounds superficially like that of Elint. It was a system for the
interpretation of radar data, though in this case the radar systems modeled were active, not
passive. Unlike Elint, AirTrac was designed to go much further than simply tracking air-
craft and finding likely threats. The scenario for AirTrac was the detection of "smugglers"
flying across a border. The problem faced by existing radar users is that a large number of
legitimate aircraft travel in the same airspace as smugglers. Smugglers may take advantage
of variations in terrain in order to find areas of poor or no radar reception. They also resort
to other evasive tactics.

The system was designed in a number of layers so that different implementation efforts
could be decoupled. The first subsystem implemented was called the Data Association
component [Nakano 87b], and is the subsystem, which most closely matches the Elint
application. It was initially intended that this component would be implemented using the
Poligon framework. It was found, however, that the simulation of the Poligon system for
a problem as complex as AirTrac would take prohibitively long. Consequently AirTrac
was implemented directly in Lamina. Substantial speed-up was shown, which seemed to
increase linearly with the number of processors. This was a very encouraging result.

The second component of AirTrac, Path Association, [Noble 88a] was significantly more
knowledge intensive than the first. This subsystem was also implemented directly in
Lamina initially. However, programming in the raw Lamina framework was too complex
and time-consuming, so a layer was built on top of Lamina, called ELMA [Noble 88b],
which provided the abstraction mode! needed for the implementation.

The final, most abstract, component of AirTrac has not yet been implemented. We have
not yet extracted all that we can learn from the second layer and we were not able to show
all of the speed-up that we thought was possible in the second layer, so work is, .ntinuing
in this area.
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5.3. ParAble

The ParAble project [Bandini 89] was an attempt, by choosing a completely different appli-
cation domain, to test the generality of the problem-solving model offered by Poligon. To
do this we decided to make a parallel implementation of the ABLE system [Selig 87], de-
veloped also at Stanford.

The objective of the ABLE project was to find a fast way to diagnose particle accelerator
beamlines. These large and complex machines are very prone to beam alignment problems
due either to misalignment of the magnets, which steer and focus the beam, or to problems
with the power supplies to those magnets, which result in the magnets not having the de-
sired strength. These systems are so complex that it can take many months of knob-twid-
dling simply to commission them.

By the use of an analytic model of the transfer functions of the beam-line components, and
a number of heuristics that use successive runs of the model, comparing the results with the
real data to locate the faults, the ABLE system was able to find faults in such systems in
about ten minutes. As particle accelerators become more complex there may well be a need
to control them in real time, so although there is no immediate need for higher performance
in the ABLE system, it is not unreasonable to suppose that there might be in the future.

A number of Experiments have been performed on ParAble, detailed in [Bandini 89]_ The
realizable parallelism in this project was, again, found to be limited mostly by the availabil-
ity of data parallelism.

5.4. Numerical and Semi-numerical programs

The expert systems mentioned above are not ideal applications for multiprocessor execu-
tion. They are irregular and very data dependent. A large body of applications already ex-
ists in the area of numerical and semi-numerical processing, which will require the speed-
up associated with parallel execution. Indeed, such programs are already being run on a
number of multiprocessors. It is therefore essential that any machine designed with a view
to being general-purpose must also be able to execute these regular, argorithmic problems
effi,.iently. A number of small numerical programs have been developed, therefore, which
allow us to test our hardware and software ideas in a much more controllable way than we
can with any expert system application. Among these are a Gaussian elimination algo-
rithm, a partial differential equation solver and an integrated circuit line simulator.

6. Conclusions

The Advanced Architectures Project has run for a number of years now. We on the project
have found that we have moved from a position of having a good understanding of Al
problem-solving techniques and knowing little about parallel computation to one where we
now believe that we have a good understanding Qf the issues involved; the problems facing
the implementors of concurrent problem-solving systems and the gains that they can rea-
sonably expect. We hope that our successes and failures reported in the publications men-
tioned here will help the rest of the research community as we start to move over to concur-
rent computational platforms.
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Abstract

In this paper we discuss Poligon and Cage, two skeletal systems for the development of
concurrent blackboard based applications, their architecture and the motivation for their de-
sign. A number of experiments have been performed in order to evaluate the perfmnzwe
of these systems. Some of these are detailed and the results derived are given. Lessons
learned in the development of both Cage and Poligon are given and conclusions about the
performance of similar systems are drawn.

1. Introduction

It is often said that future Al applications will make significantly greater computational de-
mands than the present generation. The Advanced Architectures Project of Stanford Uni-
versity's Heuristic Programming Project [Rice 88b] is investigating this issue, since it has
as its objective achieving computational speed-up for expert systems through the use of
parallel hardware and new, advanced software architectures. This requires the develop-
ment of everything from designs for parallel hardware, which might be appropriate for th
execution of future symbolic programs, through operating system and language concepts to
problem-solving frameworks and eventually mounting applications on them in order to test
the new designs.

Poligon [Rice 86] and Cage [Aiello 86] are two problem-solving frameworks developed as
part of the Advanced Architectures Project. Cage uses parallelism at the problem solving
level and is further constrained to a target system architecture of shared-memory multipro-
cessors. Poligon is designed to exploit distributed-memory machines and has a granularity
tuned to that of its underlying hardware. The potential applications envisioned for this
work can be characterized as performing real-time interpretation of continuous streams of
errorful data, a class of applications that currently run too slowly on serial blackboard
systems to be of practical use. In Sections 2 and 3 we describe the Cage and Pol:gon sys-
tems and their architectures as designs for high-performance, concurrent blackboa,! 1 sys-
tems aimed particularly at the problem domain of soft real-time problems and the motivation
for these designs. Section 4 discusses the applications mounted on the Poligon and Cage
frameworks and experiments performed on these systems to measure their performance,
showing the results of these experiments in Sections 4.3.1 and 4.4.1 and briefly
interpreting these results. We conclude in Section 5 with a number of the lessons we have
learned in the process and pointers for future research.

The field of parallel computing, like that of AI has its own set of buzz-words. Of particular
importance to the understanding of this paper are the following:

Amdahl', Limit: This is the limit to the amount of available parallelism n a program.
This limit tends to be surprisingly low for most programs. If, for instance, a program
has only 1% of its code that must be run serially, perhaps due to data dependencies,
then even with an infinite number of processors, the program can only be sped up by a
factor of a hundred.

" Distributed-memory: This is a class of multiprocessors that has a collection of proces-
sor-memory pairs, communicating with one another over some network. Typically the
communication happens through message-passing, and the processing elements can of-

1It is assumcd that the reader is familiar with ... olackboard model and the relevant terminology. For more
information, the reader is referred to [Engelmore 881.

4-199



ten only see their neighbors in tie networ. There is no concept of a global shared re-
source.

Parallelism: This is the degree to which more than one thing happens at the same time.
Parallelism can manifest itself both as pipe-line parallelism, in which a series of
different operations are applied to a sequence of data, like a car assembly line, and
replication, in which largely similar operations are performed on separate pieces of
data, like a number of men, each building a complete engine for a car.

* Serializaion: This is the state of one computational activity following another in time.
This is what happens when processes become synchronized- All programs have a
serial component Our task is to minimize this.

0 Shared-memory: This is a class of multiprocessors that has a set of processors, often
with local caches, which all have equal access to a shared memory resource. Simple
implementations of this model connect a number of processors and memory controilers
to a bus.

0 Synchronization: This term is used to describe that event which brings asynchronous,
parallel processes together synchronously. Synchronization primitives are used to en-
force serialization. For instance, if both of the operands for a "+" operation are being
computed in parallel then there must be a point of synchronization at the point when the
addition actually takes place. The process doing the addition must wait until both of the
operands have arrived.

2. The Cage System

The Cage system is an extension of the serial AGE system [Nii 79]. The two systems are
identical except that Cage allows parallel execution of many of its applications' compo-
nents. Parallel execution in Cage can occur at different levels of granularity, based on natu-
ral divisions in the blackboard model. In this section, we will first give some background
information about AGE, and then we will describe Cage and how the user can specify con-
currency in Cage.

2.1. The Derivation of Cage from AGE

AGE is an implementation of a serial blackboard system framework. It is composed of a
knowledge base, in the form of knowledge sources(KSs), and a structured solution space,
a blackboard, where the KSs can post interim results and read the results of other KS exe-
cutions. KSs contain condition-action rules that can read the blackboard and make changes
on it. The blackboard is a structured set of levels or. which objects are created and modi-
fied by the rules. These changes to the blackboard are called events. A scheduling mecha-
nism, or controller, programmable by the user, invokes one KS at a time from among those
triggered by the preceding events. Figure 1 shows the control and data flow of this serial
control cycle.
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Figure 1. AGE Serial Control Cycle.

2.2. Cage Architecture

The basic components of Cage are the same as AGE's with one addition - the declarations
that specify which components to execute in parallel and at which points to synchronize.
The components which can be executed in parallel in Cage are the KSs, the rules within the
KSs, and the condition and action parts of rules. Synchronization points can be specified
(1) in the control cycle between the concurrent execution of KSs, (2) within a KS after
evaluating all the rules' conditions but before executing any actions, or (3) within a rule,
between the condition and action parts. By selecting one of the concurrency control op-
tions, the user can alter the simple, serial execution of KSs and their components so that
they are executed in parallel. Next we will discuss each potential source of concurrency in
more detail.

2.2.1. Knowledge Source Concurrency

Two possible sources of concurrency exist at the KS level. A number of KSs can work
either on different parts of the blackboard at the same time or in a pipeline fashion. In the
application area of real-time interpretation of data, many instances of the same KS can si-
multaneously deal with new data items. Each of these KSs then becomes the first in a
chain of KSs which interprets the data up the blackboard's levels of abstraction.

KSs in Cage can be executed in parallel with or without synchronization at the control
level. With synchronization, the controller waits for all previously invoked KSs to com-
plete before invoking the next set of triggered KSs. Without synchronization, KSs are in-
voked immediately when triggered, without waiting for any other KS.

2.2.2. Rule Concurrency

Within each KS further concurrency is possible by executing the rules in parallel. Again,
Cage provides several different options for running the rules in parallel. First the condition
parts of rules are evaluated. Next, if the user opts to synchronize, the controller will wait
until all the conditions hae been evaluated before executing the action parts of the applica-
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ble rules concurrently. The user can also specify the parallel evaluation of the conditions
with the serial execution of the actions. Without synchronization, the applicable actions are
executed as soon as a rule's conditions have been evaluated.

2.2.3. Clause Concurrency

Even finer grain concurrency is possible in Cage within each rule, by executing individual
predicates of the condition part concurrently. Only one option is available; evaluation of
the predicates in parallel and execution of the action clauses in the action part of applicable
rules in parallel.

2.3. Using Cage

In addition to the speed-up and throughput data about Cage gathered in the experiments de-
scribed in the Section 4, we also learned a number of lessons about programming in a con-
current environment. Implementing the concurrency outlined above created a number of
programming problems. For example, at the rule level, the state of the blackboard which
leads to a rule firing may be changed before that rule's actions can be executed (data incon-
sistency). Also, a rule may access values from several different blackboard objects with no
guarantee that those values are consistent with each other (data incoherence). Memory con-
tention can be a problem at the clause level, if a number of clauses refer to the same black-
board object at the same time, negating the benefits of concurrent execution.

Data inconsistency was alleviated by creating an atomic operation that could read from and
then write to a blackboard object without allowing any intervening operations. In addition,
a block-read (read several slots in a block) operation wasdefined, so that a rule can read all
relevant information from an object with the guarantee that data will be consistent within
that object. No other operations are allowed to an object during a block-read of that object.

Data coherence can be maintained when running KSs in parallel, by reading all the slots of
an object that are referenced in a KS at the same .. ,ne, locking the object just once. This is
in zontrast to locking the object every time a slot is read by the rules. In other words, all
necessary blackboard data is collected into local variables, called definitions in the KS's
activation context before any rules are executed. Thus all the rules within a KS refer to data
viewed at the same time.

In a serial blackboard system one KS precondition may serve to describe several changes to
the blackboard adequately. For example, suppose the firing of one rule causes three
changes to be made serially. The last change, or event, is usually a sufficient precondition
for the selection of the next KS. In a concurrent system, however, since those changes
may occur asynchronously, all three events must be included in a KS's precondition to en-
sure that all three changes have actually occurred before the KS is executed. In general, a
simple precondition consisting of an event token is not sufficient as it was in a serial sys-
tem. A detailed specification of the activation requirements of the KSs must be available,
either in their preconditions or in the controller.

Occasionally two KSs running in parallel may attempt to change a slot at almost the same
time. It is possible that the first change could in,,alidate the later changes. To overcome
this race condition, a conditional action - an action which checks the value of a slot before
making a change - was added.
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3. The Poligon Architecture

In this section we briefly discuss the architecture of the Poligon system. A more detailed
description of the design rational for Poligon can be found in [Nii 88].

When we started the Advanced Architectures Project we suspected that the blackboard
problem-solving architecture might offer a basis for the efficient exploitation of concurrent
hardware. This was because the blackboard model appeared to have concurrency built into
it. Why this is, in fact, not the case is explained in [Rice 88a]. The primary reasons why
the blackboard model of a collection of simultaneously cooperating experts cannot develop
the parallelism that one might expect is that the blackboard model itself assumes effectively
infinite bandwidth with which the experts can see any part of the blackboard that might be
of interest. It also assumes that experts do not get into one anothers way while solving the
problem. In practice, a knowledge source can only see a small segment of the blackboard
at any one time without degrading the performance of the system unacceptably. Similarly,
the experts are dependent on one another, they must often wait for the results deduced by
other agents and can be confused by updates being posted at unexpected times or in
surprising orders. We are, however, unaware of a better architecture for concurrent
problem-solving than that of Blackboard systems.

Although a number of other research efforts have looked at concurrent blackboard systems,
these have concentrated primarily on either the aspects of distributed, concurrent problem-
solving, such as [Lesser 83] or on coarse grained parallel systems, such as [Fennell 77] or
[Ensor 85]. Poligon is a finer grained system than these, directed particularly at gaining
speed-up through parallel execution.

The normal, serial implementations of the blackboard metaphor use a scheduling mecha-
nism to cause one rule to fire after another. In parallel systems it is crucial that the pro-
grammer eliminate serial components, since this limits speed-up. 1 The main motivation of
the Poligon system was to find a way to eliminate the serializing aspects of the blackboard
model. We viewed this as doing the following:

* Eliminating the scheduling mechanism and finding ways to support concurrent rule ac-
tivation all across the blackboard.

* Optimizing the design for distributed-memory, message-passing hardware, which
should be able to deliver the best performance for large numbers of processors (of the
order of hundreds to thousands.)

* Distributing the knowledge base over the blackboard so that there would be no seri-
alization in the access to the blackboard from the executing knowledge.

* Designing the system so as to allow it to be highly compilable. It was clear from the
outset that a considerable portion of the expense of existing AL systems is due to the
fact that they are optimized for easy modification and debugging, rather than high run-
time performance. The resulting system, therefore, had to be designed so as to be able
to be compiled efficiently yet still be intelligible and debuggable during the development
cycle.

As these ideas progressed we developed the notion of a blackboard consisting of active
nodes, tightly associated with the knowledge relevant to them.

lSpeed-up can be ,ieed as the ratio of the system's speed using N processors to its speed using only one.
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A very simple scheme was developed for invoking the knowledge that had been distributed
to the blackboard nodes: rules are activated as daemons as a result of modifications to the
slots of a node (see Figure 2).

The distributed-memory hardware model, on which the Poligon system was to operate, had
the property that each processor was effectively a uniprocessor system. This meant that if
we viewed the blackboard with a "Node as a ProcesslProcessor" model then we would lose
potential parallelism due to being able to execute only one piece of code (rule) at a time for
any given node.

Rules Node

Processing Element

Rules Node

Rules Node Node Rules

Figure 2. The Organization of the Poligon Blackboard. Rules are distributed over
the network of processors and are attached to the blackboard nodes so that they can watch

for modifications made to the slots in which they are interested.

What we needed, therefore, was a mechanism to allow the activation of multiple rules for
any given blackboard node. This caused us to develop a model of Poligon which was as
fIlows: A blackboard node is a process on a processor, surrounded by a collection of
processors able to service its requests to execute rules. It can easily be seen that this model
is very close to a distributed object system model. This is by no means a coincidence. The
underlying hardware system on which Poligon was implemented was designed to support a
concurrent, distributed object-oriented programming model [Delagi 86b].

The model expressed above is not without problems. In order to minimize the probability
of a node being locked for a long period, which would delay remote access to it, as much
processing is done in the remote rule invocations as possible. 1 This means that, when the

lThere are no user accessible locks in Poligon. Poligon nodes become locked (enter critical sections)
during slot reads and updates, which are cheap operations. The Poligon architecture is such that deadlock
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rules execute, they have to do so in the context of a snap-shot of the solution state as it was
when the rule was invoked (see Figure 3). Remote reads to other nodes, even the invoking
node, are expensive, and one cannot guarantee that things haven't changed by the time the
result of the read operation has been returned.

This led to the development of the idea of a Poligon node as being an agent capable of eval-
uating its own performance. Mechanisms had to be included so as to allow the system to
be able to assess any request to modify its local state and to decide whether to perform the
update, or what else to do instead, on the basis of its own view of how it is progressing
towards its goal of solving the problem.

Uz

dpdate

Figure 3. Updates to Poligon nodes cause concurrent rule execution, which them-
selves cause further updates. This implicitly forms pipes on the blackboard as data flows

up or down the abstraction hierarchy.

4. Experiments

In this section we describe some of the experiments performed on the Poligon and Cage
systems. Results are given for these experiments and these results are interpreted.

4. 1. The Elint Application

All of the experiments reported here were performed using the same application: Elint, a
soft real-time situation assessment problem. A more detailed treatment of the Elint experi-
ments can be found in [Nii 88].

The Elint application encodes knowledge used to interpret the radar emissions made by
planes that are received by ground-based tracking stations distributed across the country.
Because these tracking sites are passive devices, they can only detect the bearing and spec-
tral characteristics of the radar emissions. Between them, it is their responsibility to deduce

will not happen as a result of system action, though the user can still write a program that will live-lock,
e.g. two nodes each waiting for one node to update the other will wait forever.
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a position, course, identity, and intention for any aircraft traveling through the monitored
airspace. The Elint application simulates a central machine that integrates reports from
these detection sites in order to achieve the overall goals mentioned.

The important characteristics of the Elint problem were:

" A continuous stream of input data.

" No a priori knowledge of the behavior or number of the aircraft being tracked.

" The need to emit periodic reports capturing the system's evolving view of the solution.

The Elint problem was chosen both because it was non-trivial and was in a class of prob-
lems, for which blackboard systems had already been used, and also because it was hoped
that parallelism would be readily available. It was anticipated that parallelism could be ex-
tracted from the concurrent execution of knowledge on any given part of the solution space
and from the potentially large number of independent elements in that solution space, i.e.
aircraft.

The application was taken from a serial implementation and was not restructured so as to be
better suited for parallel execution in either the Cage or the Poligon implementation. The
blackboard was composed of three distinct layers in the abstraction hierarchy. Data flow-
ing from one level to the next allowed pipes to be formed that were three stages long.

4.2. Experimental Method

Perhaps the most important lesson that we learned from performing these experiments was
to find a way to measure the relative performance of concurrent real-time systems. The
methods used in the experiments changed over time, based on the results of earlier ex-
periments. In the first experiment speed-up was measured very simply, dividing the time
for the application to run a given set of input data on one processor by the time for the same
system executed on multiple processors. This speed-up measure did not work well, how-
ever, because the behavior of the system changed depending on how heavily or lightly it
was loaded. A rate of data arrival which adequately loaded a 4 processor machine caused
data starvation for 16 processors. Later experiments used a more fair comparison scheme
in which different sampling intervals were used for different numbers of processors. The
sampling interval for a particular number of processors was set to be the shortest interval
which still produced non-increasing latencies, where latency is the time between the input
of data and the output of reports based on that data. Speed-up was measured by comparing
these sampling intervals with the uniprocessor sampling interval. The sampling intervals
are indicators of the throughput for a particular number of processors.

All measurements generated by the experiments were provided by the underlying CARE
simulator [Delagi 86a]. Because CARE primarily simulates distributed memory architec-
tures, it was necessary to emulate the shared memory model for the experiments on Cage
by using half the processing elements (processor-memory pairs) for processors and the
other half as memory controllers.1 A variation of Qlisp [Gabriel 84], a queue based Lisp
including QLets (parallel Let clause evaluation) and QLambdas (process closures), was cre-

Iln the experimental description, the "number of processors" refers to the number of processors used for
processing and does not include those used for memory only.
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ated to program the concurrency for Cage, whereas Poligon used a form of distributed ob-

ject system supported by the CARE architecture.1

4.3. Experiments on Cage

In this section we describe seven experimenti conducted with Cage,2 and the results de-
rived from these experiments. The purpose of the experiments was to determine the speed-
up and throughput achievable by Cage under various conditions, concurrency specifica-
tions, and resource allocation schemes. The first four experiments measured the speed-up
gained by executing various blackboard components in parallel. The last three experiments
related to improving the throughput of the Cage system.

Two different input data sets for the Elint application were used in the experiments de-
scribed here. The first, called Lumpy, was a realistic data set with data inconsistencies, er-
rors, and a varying number of observations per time interval. The problem with this data
set was the variation in data density that made it very difficult to measure performance. A
second data set, Fat, with a constant data density was created to deal with these problems.

4.3.1. Experiments on Speed-up and Throughput

In this section we show the experimental results from the experiments on the Cage system
running the Elint application.

4.3.1.1. Experiment 1

2.5

2.0'

0. 1.5 2 Speed-up

1.0

0.5

0.0 I * • * I
0 4 8 12 16

Processors

Figure 4. Results of Experiment 1.

This experiment measured the speed-up attainable for a varying numbers of processors
with parallel KSs. For this experiment the controller started all triggered KS executions in
parallel, waiting until they were done before selecting another set to run in parallel. Using
the realistic Lumpy data set, this experiment exercised all the problem solving capabilities

1The CARE shared-memory model, unlike the distributed memory model is not a particularly sophisticated
simulation. For instance, automatic data caching is not supported, though user specified caching of shared
values in local memory is allowed. We believe, however, that our simulations are reasonably representative
of not too sophisticated, generic shared-memory machines.
2A more complete description of these experiments can be found in [Nii 88].
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of the Elint application. Experiment 1 was run serially on one processor and then over
multiprocessors varying from 2 processors to 16 processors. By comparing the time re-
quired to run the data set on one processor with the time required to run with 2-16 proces-
sors, a measure of speed-up was obtained.

As shows in Figure 4, the basic speed-up began to level off with 4 processors and reached
2 with 8 processors. To explain why only a factor of two speed-up was achieved, we
need to look at the serial case. In the serial case (see Figure 5) the controller selects one KS
to execute from among all the KSs applicable at that time.

!Control KS Control KS Control K

Figure 5. Basic Control Cycle for a Serial Blackboard System.

In Experiment 1 all the pending KSs are executed in parallel, as seen in Figure 6.

Figure 6. Basic Cycle with Serial Control and Parallel KSs in Cage.

Although the KSs were run in parallel, "Amdahl's limit" limits the speed-up to the longest
serial component, in this case the controller plus the longest KS. When all component
parts of the Cage execution were individually timed, it was found that in the multiprocessor
case slightly less than half of the execution cycle time was being spent in the serial,
synchronizing controller. Experiment 1 demonstrates that no matter how many KSs are
run in parallel, speed-up gains are limited by the duration of the synchronizing controller
and the KSs.

4.3.1.2. Experiment 2

Experiment 2 also measured speed-up but in a manner that was felt to be more fair than the
basic speed-up experiment, using the second speed-up measure explained in Section 4.2.
This and subsequent experiments used the Fat data set. Experiment 2 was run with three
different sizes of multiprocessor, 1, 4, and 8 processors. Because of what was learned in
Experiment 1, in this experiment the KSs were executed without synchronization, reducing
the waiting time in the controller. As each KS completed, the controller immediately in-
voked any newly triggered KSs without waiting for any other KSs to finish.

The speed-up obtained by running KSs concurrently without synchronization was slightly
less than 4 (see Figure 7). This is almost double the speed-up obtained with synchroniza-
tion. The time spent in the controller was reduced to almost half of that in Experiment 1.
But, it should be noted that the central controller is still a bottleneck. Given the architecture
of blackboard systems, centralized controller time can be reduced but not eliminated with-
out a major shift in the way we view blackboard systems.
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Figure 7. Results of Experiment 2.

4.3.1.3. Experiment 3

This experiment attempted to increase the speed-up by exploiting parallelism at a finer
granularity than in Experiment 2. We hoped to gain a multiplicative increase in the overall
speed-up for each KS by executing the rules in parallel. The rules were executed with both
condition and action parts running concurrently and without synchronizing between the
condition and action parts. Otherwise the experimental variables of Experiment 3 are iden-
tical to those of Experiment 2.
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Figure 8. Results of Experiment 3.

The initial results of Experiment 3 were disappointing. For 8 processors only a 5.5%
speed-up over Experiment 2 was attained, giving a total speed-up of 4.12. For 4 proces-
sors there was no speed-up at all over Experiment 2. The overhead of spawning processes
offset any gains from more parallelism. We tried running Experiment 3 on a 16 processor
system in the hope of alleviating the congestion on the smaller grids. This resulted in
slightly better results, a total speed-up of 5.6 (see Figure 8). This extra speed-up is due to
the greater availability of free processors to handle th greater number of processes pro-
duced with rule level granularity.

Throughout the first three experiments one troubling aspect was the apparent low sampling
intervals Cage could support. (The sampling interval gives a measure of the actual
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throughput rate.) The minimum sampling intervals for Elint on Cage were around 120ms
which was considerably slower than that of other concurrent Elint applications, such as the
one done on Poligon. To determine the reasons for this slow throughput, various timings
on all components parts of Cage were taken. As expected, most of the time was being
spent setting-up and executing KSs. However, within the KSs a very high percentage of
time was spent in the creation/match process - searching for existing blackboard objects
or creating new ones if no match was found. A separate creation processor handles this
creation/match process in Cage. A second interesting observation was that the timings
were not regular, they were, in fact, very spiky. Operations that on average took only a
few milliseconds occasionally took a hundred milliseconds or more. An initial hypothesis
was that the spikes were caused by blocked and descheduled processes, an indication of
problems in resource allocation.

4.3.1.4. Experiment 4

Experiment 4 attempted to solve both the spikiness problem and the unexpectedly high cost
of creation by allocating some of the processors to specific tasks, thus freeing those pro-
cessors from interruption by other tasks. The three most time consuming tasks were cre-
ation/match, control, and data input, so these three processes were preallocated to specific
processors and no other processes were allowed to run on those processors.

The results of this experiment were not conclusive. Experiment 4 had a speed-up of 3%
over Experiment 3, or a total speed-up of 5.7x. But 3% falls within the margin of error for
these measurements. The queue lengths for KSs and object creation/match processors in-
creased, indicating (1) that insufficient numbers of processors were available for the KSs,
because of the three preallocated processors and (2) that the object creation/match handler
probably needed two or more processors to handle its load.

4.3.1.5. Experiment 5

Experiment 5, a second experiment involving specialized processor allocation, was more
successful. In this case only one processor, the input-handler, was used to execute the en-
tire input procedure. Previously the creation of new input objects (observations), one for
each input data item, had been handled by a separate creation handler. By eliminating the
cost of spawning the separate creation process and the possibility of blocking the input pro-
cess while waiting for the creation to complete, the input object creation time was decreased
by 59%. Also, the spikiness in the creation measurements almost disappeared.

One other improvement made in Experiment 5 involved the use of a new, more accurate
version of the CARE simulator. Because of improvements to the design of the simulated
machine, it had 4 times faster simulated memory access. This improved the total through-
put by 43%. The combination of local creation by the input handler and optimizations in
the simulator improved the best sampling interval in Experiment 5 from 120ms to 40ms.

4.3.1.6. Experiment 6

In Experiments 6 and 7 the number of processors used was increased to 32. Preliminary
runs showed little improvement in throughput due just to the increased number of available
processors. To use those additional processors Experiment 6 also increased the number of
creation process handlers from 1 to 4. Separate processors were used to handle the cre-
ation of objects at different levels of the blackboard. These multiple creation-handler pro-
cessors, together with the 16 additional processors, reduced the throughput to 31ms, a
22% improvement over the best results of Experiment 5. This improvement is a strong
indication that the single creation process was a bottleneck.
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4.3.1.7. Experiment 7

Experiment 7, the final experiment, was an attempt to remove the creation bottleneck com-
pletely, by doing all creation on the local processor, not on a special creation processor. In
order to avoid the creation of duplicate objects, the blackboard level object was locked by
the KS until a new object was created or an existing match was found. Local creation, on
the same processors as the KS or rule, also eliminated the need for Qlisp process closure
creation. Cage's use of Qlisp process closures is one of the most expensive features of the
the implementation of Cage. This is because the Cage programming model requires that
large amounts of data (often the KS definitions) be copied from shared memory into local
memory during, for instance, KS invocation. Clearly, there is a trade-off between the high
cost of copying shared data into local memory (cache), giving cheap local data access, and
the low cost of copying references to shared memory, with the relatively high cost of ac-
cess to this shared data. A smarter compiler would probably be able to improve on this
performance by picking the appropriate shared/copied representation for its data structures.
In the case of node creation discussed here, Cage requires the passing of the context of the
local processes to the creation handler, which is very expensive. With local creation and
without the Qlisp process closure, throughput was improved to 25ms, or a 37%
improvement over Experiment 5 (See Figure 9).

Experiment ms % over Exp 5
Experiment 5
Single creation processor 40 n/a
Experiment 6
Multiple creation processors 31 22%
Experiment 7
Local creation 25 37%

Figure 9. Throughput Results of Experiments 5, 6, and 7.

4.3.2. Analysis of Speed-up and Throughput Achieved

The Cage experiments resulted in two important measurements. These are the maximum
relative speed-up, comparing uniprocessor runs with multiprocessor runs. and the mini-
mum sampling interval, measuring the total throughput.

4.3.2.1. Speed-up

Experiments 1 through 4 resulted in a best speed-up of 5.7x using a 16 processor grid with
KSs and rules running concurrently without synchronizatiov. The factors limiting this
speed-up include:

• The existence of a central controller

• The serial definition section of KSs

• The inefficient allocation of processes to processors

• The high overhead of data copying during node creation and KS invocation.

The effects of the central controller were minimized in Experiment 2 through the elimination
of synchronization at that level. The definitions, which are the local bindings done at the
beginning of each KS to maintain data coherence (see Section 2.3), are the only part of the
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KS still executed serially. Executing definitions in parallel is an option in Cage, but be-
cause of the cost of blackboard object creation (63% of the average definition time) and the
difficulty it, writing independent definitions, at most a 15% improvement in speed-up could
be expected from concurrent definition execution.

Experiments 4 and 5 showed that careful resource allocation could improve speed-up. We
believe that further improvements in speed-up are possible with tailored resource allocation
for additional Cage processes. While Experiments 6 and 7 only measured throughput, a
preliminary run under similar conditions showed a speed-up of 6. Some of this gain is also
due to the elimination of the use of spawned processes for object creation, thus eliminating
much unnecessary data copying. However, some Qlisp is still needed to program concur-
rency in Cage's shared memory architecture.

4.3.2.2. Throughput

The second major result of the Cage experiments is the relatively poor throughput achieved.
The minimum sampling rate for Cage is about 9 times slower than that of a similar dis-
tributed memory system, Poligon, running the same application. The factors limiting
speed-up also limit the throughput. In addition, it should be noted that there was no opti-
mization of Cage or the Elint application, which could improve throughput significantly.

4.4. Experiments on Poligon

In this section we briefly dest.ribe the experiments performed on the Poligon system to
date. Two applications have been mounted on Poligon: Elint, as described above and
ParAble, a diagnostic application for particle accelerator beam-lines [Selig 87]. The ex-
periments with the Elint application have now been completed, whereas those on the
ParAble system are in their infancy, so only the Elint application will be considered here.

The experiments that were performed were intended to measure a number of different as-
pects of the system's performance:

" The speed-up that the Poligon system could deliver.

* The peak throughput of the system.

" The ability of the system to exploit large knowledge bases.

• The granularity of the system.

Experiments to measure these are described in Section 4.4.1.

4.4.1. Experimental Results

The space available for this paper does not allow a full explanatioa of the experimental re-
sults, so the interested reader is again advised to refer to [Nii 88] for more details. It is
hoped that the treatment here will be sufficient to give the gist of what we have learned.

It should be noted here that wherever reference is made to absolute times, these are mea-
sured in terms of the performance of the simulated hardware on which the Poligon sys;em
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runs [Dektgi 86a . Lach pr-ocessing ekmr of tfids mcWtin is of abom d ptherfoane of

a TI Explonri m 1I+ proessor.1

4.4.1.1. Measurement of Speed-up and Throughput

In this experiment two different data sets were used. One was designed to allow the
Poligon system only to create one pipe in the solutifo spce, the second allows Poligon to
create four pipe-lines; it was four times as dense.2 The combination of these two results
allows us to do the following:

0 Measue the peak throughput for the larger data set

0 Determine the contribution to speed-up dae simply to pipe-line parallelism.

& Compare the results from the two dat sets so as to be able o get a measure of the abi-
ity of the system to exploit parallelism in the source data, Le. data parallelism.

The results from the two data sets are shown in Figure 10.
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Figure 10. A graph showing the speed-ups derived from the large and small data
sets plotted against the number of processors used.

In this experiment we learned the following:

* The peak speed-up shown in this application due to pipe-line parallelism was 3.6. This
showed that although the length of the pipe was three, speed-up was greater than three
because of the concurrent execution of rules by the different stages of the pipe.

IExplorer is a trade mark of Texas Instruments Corporation.
2The small data set can be thought of as representing only one aircraft; the second had four. The data was,
therefore, no more complex, there was just more of it.

4-213



- Th1 ve.ak dhrouchputs measurd from the in o data sets were not significantly different.
This indkiaws that Poligon was ab!e to achieve an almost linear increase in speed-up as
t.C probem size of ite data set increased, an importar resul.

0 The peak throughput for the system as measured from the larger data set was about
340p per signal data record. Because of the linear increase in perfonnance with data
set size it is assumed that ith more complex problems higher performance could be
2chieved. By comparison, the Elint application, when coded to run in the AGE black-
board sysiem took about 3.7 seconds to process each piece of signal data.

4-.41.2. Measurement of Poligon's Ability to Exploit Large Knowledge
Bases

In this experiment the Poligon system was tested using the small data set used above. The
Poligon framework was modified so that, whenever a rule was invoked, N rules would be
invoked, rathcr than just one. N - I of these rules had the special characteristic that they
performed almost all of the processing required except for any blackboard modifying up-
dates. This gave a measure of the system load if the knowledge base was N times larger,
while still giving the right behavior for this application.

The results from this experiment are shown in Figure 11.
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Figure 11. A graph showing application throughput slow-down plotted against the

number of rules being fired for each rule-invoking event.

In this experiment, if the system were able to exploit parallelism in the knowledge base to
the full, one would expect that the system would not slow down at all as new knowledge
was added, i.e. the line shown in Figure 11 would be horizontal. If, on the other hand, the
system bogged do%& n completely as more knowledge was added one would expect that the
result would be worse than linear slow-down, that is, the plot would appear above the
"linear slow-down" line. As can be seen easily from the graph, Polgon's performance
was better than linear. In order to perform four times as much work it took only 2.2 times
as long. This means that, as long as there are sufficient computational resources, the
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Poligon system delivers good performance for a knowledge base whose size is at least up
to four times that of the Elint application. 1

4.4.1.3. Measurement of the Granularity of Poligon's Rules

In this experiment some of the internal mechanisms within Poligon were timed in order to
get some empirical measure of the granularity of the system.

Within a blackboard system a number of mechanisms are of crucial importance to the per-
formance of the system. Amongst these are slot reads, slot writes, and rule invocation.2

In order to determine the costs of these operations they were performed repeatedly in a
manner which allowed the individual costs to be measured with some precision.

The results of these experiments are as follows. It should be noted that all of these results
neglect any communication overhead, so they are only representative for local operations.

• Slot reads take 1.36 + 0.94n pts, where n is the number of slots being read at once,
Poligon supports a form of multiple slot read operation.

" Slot updates take 18 + 53.7n pts, where n is the number of slots being written. Poligon
allows arbitrary user code to be executed during the slot update operation, so this is a
representative figure taken from the Elint application. This is for the case of no rules
being associated with the slots being updated.

• The overhead cost of starting up a rule's execution is about lms per rule invoked.

A substantial part of the time taken performing these operations could be optimized consid-
erably. For instance, a figure of about 5009ts for rule invocation could relatively easily be
achieved in a real system and more than this improvement could be expected for a system
which allowed specialized microcode or similar efficiency tuning. This shows that there is
a lower bound to the granularity that the user can expect to achieve. For computations tak-
ing less than a few milliseconds it may not be worth starting up a rule to perform the com-
putation, the cost of parallel execution would be in excess of the serial execution time.

5. What We Have Learned

We have learned a number of lessons from this project, some of which were counter to our
intuitions.

Our intuition told us that programming a concurrent blackboard system would not be
too hard because of the assumed implicit asynchrony in serial blackboard systems. We
found this not to be the case. We found the programming task to be difficult and, we
believe, a reconceptualization of existing problems will be required in order to port
them for efficient parallel ex,;cution. The difficulty of implementation of applications is
due largely to the divergence of implementations of serial blackboard systems from the
pure blackboard model in order to make implementation and programming more man-
ageable as was mentioned in Section 2 and is covered more thoroughly in [Rice 88a].

1In AGE, the Elint knowledge base was composed of about twenty knowledge sources, each having about
three rules.
2Node creation is another important aspect, which was not measured in this experiment.
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" We found that the Poligon system and architecture itself performed fairly well. Al-
though programming the system was not trivial, the Poligon system provided a useful
abstraction model that allowed the development of an application in a blackboard-like
manner that still gave the correct answers and acceptable performance.

" Cage performed reasonably well under the circumstances. We knew from the start that
the design of Cage was likely to be limited in the performance that it could deliver be-
cause of inherent serialization in the architecture. This, indeed, proved to be the case,
but the Cage architecture is still not at all bad for the existing generation of shared-
memory multiprocessors.

" We had thought that parallelism in the knowledge base would be crucial to the achieve-
ment of high performance. In the applications that we used, knowledge proved to be
sparse and the pipe-line parallelism that resulted from it delivered only a factor of three
in speed-up. The small amount of speed-up from pipe-line parallelism was due to the
short length of the pipes, the lack of applicable knowledge, and the difficulty in balanc-
ing the pipes. Most of the parallelism seen in the applications implemented in the Ad-
vanced Architectures Project was derived from the data, not the code. The limit to the
length of the pipes derived from the application was not one that resulted from the
structure of the problem itself, but rather came from the fact that the application was
reimplemented for both Poligon and Cage from the AGE implementation, not reformu-
lated.

When we started the project our intuition told us that the significantly greater cost of
communication relative to computation would bias the programmer in favor of doing as
much as possible locally before a message was sent. It turned out that doing this in-
creased the granularity of the system and restricted parallelism. We found that, al-
though communication is expensive, as long as data keeps flowing along a pipe the
price that is payed is in latency, not in speed-up. The fact that processes are not held up
by communication is a result of the non-blocking message sending ability of the hard-
ware. Thus, fine-grained systems are likely to be significant for achieving good per-
formance from large multiprocessors, but the increased latency due to distributing the
work could have an adverse effect on real-time performance.

We learned that the simulation of multiprocessors is expensive. A number of projects
are interested simply in the difficulties caused by the asynchronous behavior of concur-
rent systems. Such projects are able to use a simple model for their implementations on
existing hardware. We, on the other hand, wanted to measure the performance of our
software on the hardware we were developing precisely in order to refine both our
hardware and software designs. This is computationally a very expensive task and has
proved to be a major limiting factor on the work that we have done. Having said this,
however, it should be noted that we are confident that we have achieved better results
and have gained deeper insights than we would have done if we had concentrated on
building real hardware. Clearly we could have used existing multiprocessors, but all
such existing systems to date have poor programming environments and would not
have given us the flexibility that we required in terms of hardware architecture. It is
difficult to perform experiments to find new hardware architectures when you are stuck
with just one architecture.

Resource allocation was found to be a significant factor in delivering high performance.
The fact that blackboard nodes are often long-lived means that an even load balance can
easily be disrupted by a few busy nodes. In the experiments reported here the alloca-
tion of processes to processors was done randomly for all of the Poligon experiments
and for the early Cage experiments. Other experiments in the Advanced Architectures
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Project have shown that, compared to the ideal, perfect load balanced state, 1 even with
careful site allocation the Elint application lost 30% in efficiency and delivered 30% less
speed-up than in the perfectly load balanced case. This could not be recovered through
the use of more processors [Delagi 881.

6. Conclusions

In this paper we have described Poligon, a blackboard framework designed to operate on
distributed-memory multiprocessors, and Cage, a blackboard framework for shared-mem-
ory machines. We have described experiments performed on both of these systems,
shown the results and discussed the conclusions that can be drawn from them, and men-
tioned some lessons that were learned along the way.

We have shown that the Poligon system can deliver a speed-up for the Elint application of
nearly twelve, with near linear speed-up gain with increasing problem complexity. We
have also shown significantly better than linear slow-down as a result of increasing knowl-
edge base complexity. We are confident, therefore, that given a larger problem Poligon
could deliver significantly more speed-up than this.

Cage has been shown to execute multiple sets of rules, in the form of KSs, concurrently.
A speed-up of 4.12 was achieved by the early experiments, improved to 5.7 with opti-
mizations of the resource allocation and 16 processors, and further improved to almost 6
with 32 processors in the last experiment. The use of a central controller to determine
which KSs to run in parallel drastically limited the speed-up possible, no matter how many
KSs were executed in parallel. The shallow knowledge base of the application limited con-
currency at the rule level, but more rules per KS would increase concurrency. Overall, we
believe that, with optimization and deeper applications, Cage can be used as a viable
concurrent blackboard environment.

From our work we can conclude that data parallelism is likely to be the most important
source of parallelism in the foreseeable future, at least until truly huge knowledge bases are
developed. This requires that concurrent problem-solving systems should be not only able
to exploit data parallelism but be able to do so in a manner which allows the rapid develop-
ment, easy maintenance and modification of knowledge bases and encourages the devel-
opment of software that is not brittle when knowledge is added or removed or when the
system meets circumstances that were not anticipated by the programmer. Poligon and
Cage are possible first steps in this direction.

7. Bibliography
[Aiello 86] Nelleke Aiello. User-Directed Control of Parallelism: The Cage Sys-

tem. Technical Report KSL-86-31, Knowledge Systems Laboratory,
Computer Science Department, Stanford University, April 1986.

[Delagi 86a] Bruce Delagi. CARE Users Manual. Technical Report KSL-86-36,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University, 1986.

[Delagi 86b] Bruce A Delagi, Nakul P. Saraiya, Gregory T. Byrd. LAMINA:
CARE Applications Interface. Technical Report KSL-86-76, Knowl-
edge Systems Laboratory, Computer Science Department, Stanford
University, 1986.

lit was possible to measure this because of being able to "cheat" in the processor allocation for the
simulator, assuming global knowledge.

4-217



[Delagi 88] Bruce A. Delagi and Nakul P. Saraiya. ELINT in LAMINA:
Application of a Concurrent Object Language. Technical Report KSL-
88-33, Heuristic Programming Project, Computer Science Depart-
ment, Stanford University, 1988.

[Engelmore 88] Robert Engelmore and Tony Morgan (eds.) Blackboard Systems.
Addison-Wesley Publishing Company Inc., Menlo Park 1988.

[Ensor 85] J. Robert Ensor and John D. Gabbe. Transactional Blackboards.
Proceedings of the 9th International Joint Conference on Artificial
Intelligence: 340-344, 1985.

[Gabriel 84] Richard P. Gabriel, and John McCarthy. Queue-based Multi-pro-
cessing Lisp. Proceedings of the ACM Symposium on Lisp and
Functional Programming: 25-44, August, 1984

[Lesser 83] Victor R. Lesser and Daniel D. Corkill. The Distributed Vehicle
Monitoring Testbed: A Tools for the Investigation of Distributed
Problem Solving Networks. The Al Magazine, Fall: 15-33, 1983.

[Nii 79] H. Penny Nii and Nelleke Aiello. AGE: A Knowledge-based Pro-
gram for Building Knowledge-based Programs. Proceedings of the
6th International Joint Conference on Artificial Intelligence: 645-655,
1979.

[Nii 86] H. Penny Nii. Blackboard Systems. Technical Report KSL-86-18,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University, April 1986. Also in AI Magazine, vol. 7-2 and
vol. 7-3, 1986.

[Nii 88] H. Penny Nii, Nelleke Aiello and James Rice. Experiments on Cage
and Poligon: Measuring the Performance of Parallel Blackboard Sys-
tems. Technical Report KSL-88-66, Knowledge Systems Lab-
oratory, Computer Science Department, Stanford University, October
1988.

[Rice 86] James Rice. The Poligon User's Manual. Knowledge Systems Lab-
oratory, Computer Science Department, Stanford University, 1986.

[Rice 88a] James Rice. Problems with Problem-Solving in Parallel: The Poligon
System. Technical Report KSL-88-04, Knowledge Systems Lab-
oratory, Computer Science Department, Stanford University, January
1988. Also in Proceedings of Third International Conference on
Supercomputing, May 1988.

[Rice 88b] James Rice. The Advanced Architectures Project. Technical Report
KSL-88-71, Knowledge Systems Laboratory, Computer Science De-
partment, Stanford University, January 1988.

[Selig 87] Lawrence J. Selig. An Expert System using Numerical Simulation
and Optimization to find Particle Beam Line Errors. Technical Report
KSL-87-36, Heuristic Programming Project, Computer Science De-
partment, Stanford University, 1987.

4-218



Knowledge Systems Laboratory November 1989
Report No. KSL-89-37

The Design and Implementation of Poligon,
a High-Performance, Concurrent Blackboard

System Shell

by
James Rice

(Rice@Sumex-Aim.Stanford.Edu)

Knowledge Systems Laboratory
Stanford University

701 Welch Road
Palo Alto, CA* 94304

The author gratefully acknowledges the support of the following funding agencies for this
project: DARPA/RADC, under contract F30602-85-C-0012; NASA, under contract num-
ber NCC 2-220; Boeing Computer Services, under contract number W-266875.

* California constantly emits neutrons, which strike other materials and make them radioactive. -

Birmingham (Ala) News

4-219



Abstract

I started at the top and worked down.

- Orson Welles.

This paper discusses in detail the design and implementation of Poligon, a concurrent
blackboard system, documenting our progress and the problem areas we identified in the
process of developing it. It also considers the factors that aid and those that limit the per-
formance of blackboard systems in general and of concurrent blackboard systems in par-
ticular, relating these factors to the implementation of Poligon.

1. Introduction

Six Hours a-Day the young Students were employed in this Labour; and the
Professor shewed me several Volumes in large Folio already collected, of broken
Sentences, which he intended to piece together; and out of those rich Materials to
give the World a compleat Body of all Arts and Sciences; which howiever might be
still improved, and much expedited, if the Publick would raise a Fund for making
and employing five Hundred such Frames in Lagado, and oblige the Managers to
contribute in common their several Collections.

-Jonathan Swift, Gulliver's Travels,
Chapter 5 of Part III "A Voyage to Laputa"

The Advanced Architectures Project [Rice 88c] has already published a large number of re-
search results, for example [Nii 88b] and [Saraiya 89]. Up to now, however, we have not
described the actual implementation of the systems that were produced in order to do our
research. During this research we identified solutions and potential problem areas for de-
signing future systems in our target area of research, namely concurrent problem-solving
systems. It is important to us that we should be able to disseminate the knowledge that we
have gained through our experience so that the obstacles we encountered can be avoided by
others. Thus this paper not only highlights our positive results, but also attempts to evalu-
ate our approaches and the problems inherent in these systems.

In this paper we describe the design and implementation of Poligon [Rice 86], a concurrent
blackboard system [Nii 86]. 1 In this section we briefly outline the reasons why we built
Poligon, in Section 2 we describe the design and implementation of AGE [Nii 79], perhaps
the archetypal, serial blackboard system shell, so as to introduce the discussion of
Poligon's design. In Section 3 we briefly consider the implications of the blackboard
model for parallel execution. In Section 4 we discuss the design and implementation of
Poligon describing in detail its internal representation. Section 5 focuses on the design of
Poligon's program support environment. Throughout the paper we attempt evaluate our
approaches based on the outcomes of the project, which are summarized in Section 6.

lIt may be of interest to note that the name Poligon originated from the system's ability to run in both
serial and parallel modes. Names of parallel systems often begin with the letter p, Poh gon combines the
Greek word 'Otyos (few) and IloXiyovos (producing many, prolific, from which we derive polygon, a
many-sided object). Following the same pattern, Poligon's non-CARE mode is called Oligon.
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In this paper we assume at least a passing acquaintance with knowledge-based system
shells and with concurrency, synchronization, critical sections, and other related concepts.
Those less familiar with these issues are directed to [Nii 88a], which provides a thorough
explanation of the issues and terminology involved.

This paper discusses not only Poligon, a system that we implemented, and AGE, a system
that was implemented a number of years ago but also different ways in which Poligon or
some future systems could be implemented. We have endeavored to distinguish these
subjunctive systems from those that have actually been implemented, but the reader should
still be aware that in order to state our beliefs and hypotheses about the future of concurrent
blackboard systems we inevitably have to describe how we would implement Poligon in
the light of what we have learned or what we would have done if our goals had been differ-
ent. For instance, some design decisions were based on the goals of flexibility and ease of
implementation, whereas if we were to implement again with the primary goal of peak per-
formance, we might choose entirely different design and implementation strategies. The
reader should, therefore, note phrases such as "future implementations might...", and "in
the best of all possible worlds ...,. which indicate some impending speculation rather than
statement of fact.

1. 1. Why High Performance?

Quick is beautiful.

F.J. Dyson

Eagar likes high-performance machines.

Al research has proceeded for some time without much concern about performance.
Researchers have mostly been concerned about the behavior of their programs and were
satisfied as long as their programs executed in reasonable time. Now that the technology is
maturing and there is increasing pressure to apply Al programming techniques to previ-
ously intractable problems in the real world. This inevitably means that the performance of
these systems must be compatible with the real world. Hearsay II [Erman 80] provides a
good example of this. Even if it had worked perfectly, it would still, at that time, have op-
erated at least ten times too slowly to have been used in the real world. The problem do-
main we chose to investigate was the interpretation of multiple, continuous signal data
streams, such as one might find in radar systems. We already knew this domain to be one
in which current blackboard systems have not been able to cope with the performance de-
mands of the real world.
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1.2. Why Concurrent?

A physicist had a horseshoe hanging on a door of his laboratory. His colleagues
were surprised and asked whether he believed that it would bring luck to his exper-
iments. He answered: "No, I don't believe in superstitions. But I have been told
that it works even if you don't believe in it."

I. B. Cohen

To begin with we should address the question of why we are looking at concurrent systems
at all. As mentioned earlier, we need more performance from our AI software in order to
apply it to real-world problems. To accomplish our goal, we also need to develop pro-
gramming methodologies to help us use the evolving generation of machines. It was antic-
ipated that the use of multiple processors could deliver the desired increases in speed.
Thus, we wanted parallelism solely in order to gain performance, not to model the physical
separation of processors in a distributed, multi-agent system or to improve the reliability of
our software.

Eagar likes to be Parallel.

1.3. Why a Blackboard System?

On the atomic bomb: That is the biggest fool thing we have ever done. The bomb
will never go off, and I speak as an expert in explosives.

- Admiral William Leahy to President Truman (1945).

Having decided that to investigate concurrent systems, we had to determine which software
architectures we were interesteJ in. The primary question was: Why not write everything
in C or as:embler with suitable parallelizing directives? This is by no means a trivial ques-
tion. The development of any high-level programming tool is based on the hidden as-
sumption that its benefits outweigh its costs. In choosing some form of high-level pro-
gramming tool over a low-level programming tool, the trade-off is hard to justify when the
goal is a high performance system. Except for truly enormous systems, it is generally the
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case that software written in assembler is faster and smaller than software written in high-
level languages. What one trades off, then, is greater ease of program development, modi-
fication, and maintenance against performance. The human cost of software development
is great enough that it pays to spend more money on hardware to get the required perfor-
mance than to spend money on the software being developed.

Eagar finds that a blackboard helps him organize many experts.

Generally this argument applies only in areas of specialized software. Word processing
software, like that used to write this paper is usually sold in such quantities that despite the
high cost of programming, it is worthwhile to develop new software for existing platforms
using less productive methodologies that result in faster program execution. There is,
however, a large domain of applications that are only run on a few machines. This soft-
ware must be developed quickly and modified and maintained easily. Nowhere is this
more apparent than in the development of Al software.

Thus, what we are saying is that when we commit ourselves to speeding up expert-system
applications using of parallel hardware. We are committed to designing software that can
meet its intended purpose. If we elect to design a low-level tool, we accept that it may be
hard to use, but it must be very fast. If we design a high-level tool then not only should it
be able to solve the problems reasonably quickly, but it should also deliver the benefits that
are claimed for high-level tools; modifiability, maintainability, and speed of code develop-
ment. We were more interested in the design of high-level tools so we were compelled to
develop software architectures with the capability to handle the rapid development of con-
current expert systems while still giving high performance. To do this, we sought a com-
putational model around which to develop our design.
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At the time, the most promising contender for our prototypical software architecture was
the blackboard architecture. Our experience in using this architecture on our project was a
significant advantage, but in addition to this, the design itself seemed to admit parallelism
through being an intrinsically concurrent problem-solving model. It also seemed to meet
our need for a high-level computational model that would help the programmer deal with
the complexity of future Al systems. We later learned that blackboard systems are not as
parallel as we originally thought; why this is the case is documented in fair detail in [Rice
88a]. Our example suggests, therefore, that one should not pick a programming model for
reasons of a superficial match to one's cognitive model of concurrent problem solving.
Many of our findings were considerably at variance with our intuition when we started the
project. We know of no better architecture than the blackboard model for concurrent prob-
lem solving, but this may simply be that few have tried others, other than simple produc-
tion systems [Gupta 86].

The rest of this paper is biased toward the design of blackboard systems; however, a num-
ber of the lessons we learned have broader applicability than just to the field of blackboard
systems. Because the blackboard programming model has achieved considerable popular-
ity for reasons independent of its performance, it is quite likely that many will attempt the
implementation of concurrent blackboard systems and can benefit from our experience.

2. The Implementation of an Existing Blackboard System -
AGE

What we want is a story that starts with an earthquake and works its way up to a
climax.

- Samuel Goldwyn

In this section we discuss the design of AGE, a blackboard framework developed at
Stanford, both to provide historical and technical background, and to help elucidate the is-
sues involved in developing our project goals.

AGE is a blackboard framework written in Interlisp. It is significant that it is a framework.
There have been a number of hard-coded blackboard systems, HASP/SIAP [Nii 82] and
Hearsay II [Erman 80] being the best known. We were not interested in the development
of hard-coded solutions to our applications since this would have violated the trade-off
mentioned in Section 1.3. Having developed the tool, the marginal cost of developing
more applications should be relatively small. This is, of course, the same argument that led
to the development of compilers.

AGE is a system whose design is geared toward the rapid development of blackboard ap-
plications. It provides a toolkit for blackboard system development, which contains the in-
frastructure in which the user's knowledge is to run, as well as such things as rule editors.

2.1. The Blackboard Model

Although the main purpose of this paper is not to explicate the blackboard programming
model, it is useful to give a brief description of a canonical blackboard system, in order to
show how AGE implements this model. For further information on various blackboard
systems the reader may wish to consult [Engelmore 88].

In the blackboard problem-solving model, a group of experts is gathered around a black-
board, each contributing his own knowledge toward solving the problem at hand. The ex-
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perts communicate by posting conclusions on the blackboard and watching for other ex-
perts posting their conclusions in a similar way. When an expert spots a piece of informa-
tion that he knows how to handle, he starts working with it. By this means the solution
evolves.

Invoking a knowledge source.

This problem-solving model cannot be immediately implemented for a number of reasons,
but the primary change that is needed to turn this problem-solving model into a program-
ming model is the inclusion of a scheduling mechanism. This is often referred to as an op-
portunistic scheduling scheme and is often thought to be central to blackboard systems,
even though it is only a product of their implementation, rather than their design. In this
case, opportunistic means that the system is sensitive to changes within the evolving solu-
tion and, in some manner, tries to invoke the most appropriate piece of knowledge at any
given time in order to help the progress of the solution. This is in contrast to conventional
operating system scheduling models in wi.ich the scheduler itself has no knowledge of the
intent or importance of any given process other than through the use of some "magic"
numbers such as priority or quantum numbers. Clearly, a good knowledge-based sched-
uler ought to be able to use knowledge of the application domain and of the knowledge be-
ing executed to find a more responsive and efficient scheduling order.

2.2. AGE, the Canonical Blackboard Shell

Titus Lartius: Follow Cominius; we must follow you;
Right worthy you priority.

_ Shakespeare, Coriolanus, act I scene I.

In this section we discuss the implementation of AGE, highlighting the factors governing
its performance.

AGE, being a blackboard system, has a global database that is used to represent the evolv-
ing solution - the blackboard. This database is implemented within the native Interlisp en-
vironment's heap. The blackboard is made up of a number of data structures that represent
the different elements in the solution space. These solution-space elements, called nodes,
contain mappings from user-defined names to the values they represent. For instance, a
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node might have a slot called parent, which has as its associated value the parent of the
node in question. These mappings are usually referred to as attributelvalue pairs.

The knowledge base is composed of a collection of knowledge sources (KSs). These are
structures that contain a set of rules that are applied when a knowledge source is invoked.
The code for these knowledge sources is also resident within the Lisp system's heap.

A typical blackboard application written in AGE has the following behavior and is shown
in Figure 2-1.

" Data coming into the system results in the creation of nodes on the blackboard.
These nodes have their slots initialized so that they have some meaningful values in
them.

" An event token is passed to the scheduler, in turn the scheduling mechanism in-
vokes the knowledge sources that are interested in that type of event. This involves
searching the knowledge base for applicable knowledge sources.

*During the invocation of a knowledge source, computation is performed in order to

construct some context relevant to that particular invocation of the knowledge
source. The named components of the context are referred to as knowledge source
bindings. These take the place of local variables in knowledge sources and map lo-
cal identifiers into computed values. Once these values have been computed, the
rules attempt to fire. Rules are implemented as condition/action pairs. If the condi-
tion is true, the action or actions are invoked.'

" Clearly, the evaluation of knowledge source bindings and of any expressions
within rules and knowledge sources must be able to look at the nodes on the black-
board. If this were not the case, the knowledge represented by the knowledge
source would be unable to do any computation that was dependent on the state of
the solution. For this reason, AGE supports a function (called $Value) that will
read the value or values associated with a particular attribute on a particular node.
This is AGE's slot read operation.

" Similarly, the knowledge in the system must have some way to record its conclu-
sions. This is done in one of two ways: either the rule that is executing will modify
a node or nodes on the blackboard to conform to its new model of reality, or it will
create new blackboard nodes to represent new parts of the solution.

" Finally, having performed any appropriate side-effects on the blackboard, the AGE
application must perform some action in order to make sure that the system notices
the changes that have been made. 2 This is done by naming the changes with an
event token. It is this event token that the scheduling mechanism sees in later sys-
tem cycles and that causes the subsequent invocation of further knowledge sources.

1AGE also supports a mechanism for selecting which rules within a given knowledge source are to fire, but
this is not germane to our discussion here.
21n the first implementation of MXA [Rice 84], every modification to every slot generated an event. The
number of events to be processed grew so large that the application was not able to deal with them
reasonably. AGE's strategy of leaving the posting of event tokens to the user is a less automatic approach
but more reasonable in practice.
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The system loops around, looing fob events on the event queue and processing
them in the manner descuibed above. The lpcess of acting on an evet and lo
around to process the next event is referred to as dhe sysrar. t'dle-

Blockbowd Knowledge B=se
KS

h 

-Up-er

NO& NodeSystem

cycle
rjScheuler

Fig. 2-1. This figure depicts some fundamental aspects of most blackboard sys-
tems. A central scheduler sees or is informed of changes on the blackboard noting them
in an event queue. Events are selected from this queue and are used to trigger knowledge
sources, which in turn act on the blackboard.

Now that we have outlined the essential run-time behavior of AGE, we can distill from this
description the essential components of a blackboard system. These are:

* Dynamic node creation

" Knowledge search - finding applicable knowledge sources for a given event type

* Conflict resolution - .leciding which knowledge source to invoke if more than one
is currently invokable

" Knowledge invocation - firing up a knowledge source once it has been selected

" Context evaluation - evaluating any user code necessary for the knowledge source

" Slot reads

" Slot updates - the side-effects that propagate conclusions

" Event posting - recording that something significant has happened
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It shoud also be nmoed ha nun) backboard s2ysems have a mechanism for finding nodes
th-.a m h a ce.ain ped.icze, AGEs SFznd nd M AX's (Rice 84] set creation mechanism
are but two examnples.

The relative imporance of these different aspects of a blackboard system will depend very
murch on the archirecure and on the application for which it is being used. For instance, a
s)sem with a large knowledge base of simple rules will stress the knowledge search and
invocation mechanisms; an application that does a lot of raw number crunching will require
the rapid evAluation of user code. It seems likely that any blackboard system implemena-
tion tool (shell) must have so,m means of performing these tasks, and if it has any aspira-
tions to high performance, a reasonable strategy for making them efficient 1

AGE %2s designed primaril) as an experimental tool and so was optimized more for pro-
gram d&.elopment than run time perfomance. We will now discuss the implementation of
each component of AGE so that %c can contrast its implementation with that of Poligon.

Node creation. AGE nodes are implemented as slots on the property lists of the
syvmbols that name the nodes 2 The slots within nodes are represented simply
as an Albist. Thus, the instantiation of nodes simply involves the creation of the
data structure and the recording of it in the level (class) of nodes of the same
type. A consequence of this architecture is that nodes of a given level - air-
craft, for instance - are only similar by convention. Any node can have a col-
lection of slots that is totally different from another node that is notionally of the
same type. This means that space will, in principle, not be wasted in nodes that
never use certain slots.

Knowledge search. AGE, like many blackboard systems, offers a user-pro-
grammable scheduling mechanism with various precanned strategies. By de-
fault events are selected from a global event queue in AGE. Each event encap-
sulates both the node that caused the event and the event token, which is used to
select the applicable knowledge sources in the next cycle. The event token is
compared with the preconditions on each knowledge source in the knowledge
base, and the set of applicable knowledge sources is delivered. The knowledge
source precondition merely has to name the event token against which it is to
match. This precondition can be thought of as a filter that helps to select poten-
tially applicable rules.

Conflict resolution. AGE's conflict resolution strategy is extremely simple. If
more than one knowledge source could be triggered from an event, then the
matching knowledges are fired in the lexical order of their definition.

Knowledge invocation. In AGE, knowledge sources are implemented as list
record iructures that are interpreted by the scheduling mechanism. The trigger-
ing node (the focus node) is taken from the event queue and dynamically bound
to a global variable, called focus.node. During the invocation of a knowledge
source, code executes any knowledge source bindings and then attempts to fire

By %a) of qualifiwtion. %c should say that at prcsent most serial blaLkboard systems are optimized for

executing cither %car, h or rcnition tpc. of applkiation.s. It would pcrhaps be unreasonable to expect any
,tiffercnt from a parallel s).stcm, though in the bL.t of all pussible worlds a blaLkboard tool would be good
at both of these tasks.
2A unique identifier is CONSed to name each node.
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the rules by successively testing their conditions and executing their actions, if
appropriate.

Context evaluation. In AGE, all user code is interpreted. This means that all
knowledge source bindings and all expressions that are evaluated during the ex-
ecution of rules are also interpreted.

Slot reads. The SValue function performs Slot reads in a regular manner. It can
read the value of slots on any node on the blackboard with cost independent of
the node being read. The $Value function must access the AList within the
node structure and must then search for the value named by the slot being ac-
cessed. This search must be performed because even if the system were to be
compiled it would not be possible to establish at compile-time the location of
any given slot within any given class of node.

Node updates. AGE provides a fixed number of system-defined ways to update a
node. These allow the modification of the value lists associated with a collec-
tion of slots and are performed by calling a procedure ($Modify or $Supersede)
with a set of arguments that are interpreted so as to find the slots to be updated
and the values to put into those slots.

Event posting. Event posting is simple in AGE because of its centralized event
queue used by the scheduling mechanism. Whenever an event is to be posted,
AGE invokes a procedure that encapsulates the node causing the event and the
event token and pushes the event onto the front of the event queue.

Search. Searching a blackboard in a serial system with most implementation
techniques is likely to be a linear time operation at best and highly combinatorial
at worst. AGE's $Find operation searches linearly through all the nodes on a
blackboard level for a match.

What a high-performance blackboard system should do, therefore, is find ways to make
each of these operations fast while preserving the blackboard model.

3. Implications for Parallel Systems

Let's bring it up to date with some snappy nineteenth-century dialogue.

Samuel Goldwyn

The AGE blackboard model discussed above is based on a number of hidden assumptions
that preclude parallel execution. In this section we touch on some of these issues in order
to show why certain implementation decisions were made in Poligon.
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3. 1. The Right Answer

A second order approximation for evaluation of the K6chel (K) numbers of a
Mozart symphony (S): S = 0.27465 + 0.157692K + 0.000159446K 2

R.P. and J.R. Cody'

We should first stress that a concurrent implementation should get the right answer. This is
not at all a trivial point and bears some thought. In serial blackboard systems such as
AGE, only one thing ever happens at once; in other words, there is no ambiguity about the
degree to which the system is converging toward a solution. It is possible to construct a
concurrent problem-solving architecture that will act identically to a serial system, but the
amount of synchronization required is great enough that the parallel implementation is likely
to be slower than the serial version because of the costs of process creation, process
switching and synchronization. 2 As soon as one starts to relax the requirement that a con-
current system should have the same semantics as a serial system, the nondeterminism so
introduced can result in a system that either behaves quite unpredictably or fails to converge
towards any solution at all.

As a corollary we can say that because a concurrent system allows the simultaneous inves-
tigation different avenues that may lead to solutions of differing quality, it is possible to
trade off the accuracy of results produced against the overall performance of the system.

Eagar-Jones Average
Pork Belly Futures $4.23

Condo Cave Dwellings Inc. $0.03
Wife-Grabber Clubs Corp. $9.42

McBrontoburger Intl. (Franchize) Inc. $3.11

0o

Eagar finds that tining can be crucial to getting the right answer.

IThis method will give an answer not more than two out, 85 percent of the time.
2This need not be the case if the scrial program is, for instane, a pure applicative program, the semantls
of ,%hich are identical Ahcn executed in parallel, but this statement hulds true for the parallelization of most
current serial programs.
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3.2. Instances and Processes

Dogberry: Come, bind them. Thou naughty varled

Shakespeare, Much Ado About Nothing, act IV, scene II

In concurrent systems it is frequently the case that in order to implement concurrency, each
piece of concurrent computation must be executed within a process. For a number of sys-
tem implementation reasons, these processes are often large and expensive. A serial sys-
tem need not worry about such matters. Even if such things as dynamic binding are elimi-
nated from the system, process switch time is still likely to be substantially greater than the
native system's function call overhead because of the cost of reloading caches. In addition,
the cost of processes has a substantial impact on the programming model. This is because
an appealing programming model for concurrent computation is that of asynchronously
communicating objects. In medium-grain-sized machines, these objects are generally tens
to hundreds of bytes in size. Because of page-based stack protection hardware and the in-
creasing size of pages in modern machines, even the minimum size of a stack group is
likely to be tens or hundreds of times that of the objects in the system. This means that one
cannot sensibly allocate a process to each object without either accepting a huge loss in
memory performance or choosing some architecture or computational model that makes
more efficient use of stack groups.

3.3. Data Types

Mathematics are a species of Frenchmen; if you say something to them, they trans-
late it into their own language and presto! it is something entirely different.

- Giethe.

Existing serial systems have a well-understood set of data types that are geared toward both
the efficient use of existing hardware and the implementation of programmer abstractions.
An example of this is structure types, which are often implemented as arrays. Array
indexing is fast on all machines. Thus, the user is guaranteed the efficient implementation
of his program while preserving the abstraction of naming fields in data items symbolically.

It is not clear yet whether these data structures are appropriate for general concurrent com-
putation, let alone Al programming. CMLisp [Hillis 85] is an example of a language in
which new data structures are used to enhance parallelism. Certainly researchers will have
to think hard about what data structures are appropriate for concurrent problem solving.
Once a reasonable consensus has been reached, we must then convince hardware imple-
mentors that these new data types should be supported efficiently in their hardware.
Poligon made some steps in this direction, as is mentioned in Section 4.10.

3.4. Control

Control, or MetaKnowledge as it is often called, is intrinsically a serializing process, at
least as we understand it in the serial blackboard sense. This is because the act of stopping
to decide what to do next requires synchronization and then serial processing of the deci-
sion process, followed by the serial execution of the knowledge that is selected. Similarly,
the knowledge that decides to post events must synchronize on the shared event queue.
Strong evidence to support the assertion that control is intrinsically se,;alizing is given in
[Nii 88a] and [Aiello 88].
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To make efficient use of parallel processors, therefore, a concurrent problem-solving sys-
tem must try to find ways to avoid the overhead associated with scheduling. As a conse-
quence, system performance will probably degrade because the system is unable to apply
the best knowledge all of the time. But given good design, one can at least hope that sav-
ing the cost of control and the parallelism extracted as a consequence will buy back by
many times the loss in performance caused by executing suboptimal knowledge.

3.5. Hardware

The degree to which our normal serial programs match the hardware on which they run is
something we all take for granted. The languages in which we express the programs are
themselves biased toward the efficient use of the hardware and vice versa. This is less
likely to be the case in the near future. New programming models will have to evolve to
cope with new hardware designs, and new programming methodologies will have to be
developed. It is clear that a good match between the granularity of the hardware and that of
the program will be crucial to the efficient execution of user programs. Likewise, it may
well be the case that a good match between programming model and memory architecture
will be required. Programming models that use message passing may well be the best ap-
plication for distributed-memory message-passing hardware. A shared-variable program-
ming methodology may make more efficient use of shared memory machines. This is dis-
cussed in [Byrd 88] (see Figure 3-1). An example of a concurrent blackboard system de-
signed to operate on shared-memory machines is Cage [Aiello 86], also part of the
Advanced Architectures Project.

EP

P/M P/M P/M P/M

P/M P/M P/M P/MM

a b
Fig. 3-1. a. A distributed memory machine consists of a collection of proces-
sorlmemory (PIM) pairs linked by some network - in this case, a six-way connected ar-
ray. b. A shared memory machine consists of a collection of processors that view a col-
lection of memories as a global resource. In this case, a bus connects the processors to
the memories.

3.6. Real-Time

Real-time systems have some special attributes that must affect our way of thinking in a
parallel computational environment. Data is likely to arrive out of order if, for instance,
net, ork congestion causes unpredictable delays in message transmission. Therefore, pro-
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grams must be rugged with respect to data being garbled and must be able to do the "right

thing" even when different parts of the program are working at wildly different rates.

4. The Implementation of Poligon

Basic research is what I am doing when i don't know what I am doing.

- Wernher von Braun

In this section we discuss the implementation of Poligon in detail, discussing its history,
the problem areas we encountered and, in particular, the areas of a blackboard system men-
tioned in Section 2 that we believe require improvements in efficiency.

Our initial ideas about Poligon were strongly influenced by the primary objectives of the
Advanced Architectures Project. It was broadly assumed that silicon was going to be
cheap. We could afford to produce a resource-inefficient design as long as it was usefully
faster than one that was more resource efficient. Similarly, we assumed that our hardware
design, which was to be run in simulation, would be strongly driven by our evolving pro-
gramming models. This would allow us to assume the existence of a "blackboard ma-
chine" and thus produce designs that could not be efficiently implemented on existing
hardware, but that could be implemented on a blackboard machine with suitable hardware
or microcode support. 1

These assumptions proved not to be valid simply because of the way the project developed.
The hardware design component of the project progressed at a greater rate than the software
design, and by the time, some of our problem-solving software began to be implemented, it
was clear that we would have to reconsider some of our design decisions in order to get an
efficient implementation on the hardware that liad been designed. Clearly lack of experi-
ence of the real problems of concurrent programming may well have marred our early de-
cisions. The reader is therefore advised to view the following description of the evolving
design of Poligon in terms not only of increasing understanding of the underlying problems
but also of a gradual appreciation that the targets that we thought were fixed at the begin-
ning of the project were, in fact, moving.

An overriding consideration in the design of Poligon was to develop a system that could, at
least in principle, be highly compiled. Existing systems usually have to rely on a great deal
of interpretation. Consequently, it was decided early on that if we wanted a feature x to
give us the functionality that already exists in serial blackboard systems and there was a
similar feature x' that gave similar functionality, but was more highly compilable, we
would choose x' over x. This philosophy strongly influenced the designs described in this
section.

4. 1. The Programming Model

I had a good idea this morning but I didn't like it.

Samuel Goldwyn

During the initial design of what later became known as Poligon, we decided that we
wanted to prestrve the abstraction model provided by the blackboard programming

1It is not at all Jear, of aoursc, whether an)one will ewer build a dedicated blackboard machine of this type.
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metaphor. We already suspected that control would be a significant serializing factor and
thought that the communication path between the knowledge base and the blackboard
would be a bottleneck if we naYvely parallelized a serial blackboard system. We resolved to
produce a design that would eliminate these factors as much as possible, while still retain-
ing the characteristics of a blackboard system.

.- 1 n foubr er li di

U u--- OM-- - E-

Fig. 4-1. An ideal machino the b Poligon programming model would probablybe a collection of shared memory machines linked as if they were a distributed memory
machine. This would allow tight coupling and the sharing of data between rule invoca-
tions for a particular node and efficient loose coupling between the nodes on the black-
board.

We decided to make the nodes on the blackboard into active agents. A compiler would at-
tach relevant knowledge to the nodes at compile/load time, and the nodes would then in-
voke their knowledge as daemons triggered by changes to the nodes. This meant that all
centralized control would be removed and that all relevant knowledge would have direct ac-
cess to the data with which it was most concerned. These design ideas were strongly influ-
enced by arguments from our hardware developers that suggested that multiprocessors
having very large numbers of processors are most likely to be distributed memory ma-
chines. As a result, the cost of reading data from a local processor's memory would prob-
ably be much less than that of reading it from a remote processor/memory pair, at least until
appropriate new programming models could be developed. It seemed that our own pro-
gramming model should in some way reflect this asymmetry, though we initially hoped that
we could shield the Poligon programmer from this. An idealized machine model for the
Poligon programming model is shown in Figure 4-1.

It is important to note that the programming model was strongly influenced by the known
implementation model of the CARE machine. This model encouraged a value-passing
model of computation, so Poligon was to allow no global variables, and the values trans-
mitted as arguments to any messages sent by the system would be copies of the original
values, not remote pointers to the actual values. Remote-Address pointer objects were the
only type of pointer that could be transmitted between processing elements. These are
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pointers to the streams used to communicate between processes. In the CARE machine,
the copying of data is performed by a special processor that handles operating system and
communication functions. The user's application is not held up by the copying of message
arguments, since this happens in parallel with user code evaluation. Thus, in the following
discussion, whenever reference is made to messages being sent or to values being transmit-
ted the reader should remember that these are always copies of the data structures on the
originating processor.

Another aspect of the CARE machine model is the semantics of message passing. Unlike
the sending of a messages in a Flavors program, for instance, messages in the CARE ma-
chine model do not have procedure-call semantics. Returning a value from the computation
performed as the result of a message is not mandatory, nor, when a value is returned, will
this reply necessarily be sent to the originator of the message. Messages in CARE have
explicit clients. The clients of a message are a collection of the nodes that will need to
know the values derived from the computation invoked by the message. This set may be
null. Therefore, while much message passing in Poligon has procedure-call semantics this
is only because the clients of the messages are often the same as the originators of the mes-
sages. This is not always the case, however.

4.2. The Structure of Nodes

On trapping a lion in a desert [Petard 38]: The "Mengentheoretisch" method. We
observe that the desert is a separable space. It therefore contains an enumerable
dense set of points,from which can be extracted a sequence having the lion as limit.
We then approach the lion stealthily along this sequence, bearing with as suitable
equipment.

The development of Poligon started on Symbolics M Lisp Machines1 and later, upon their
arrival, continued on ExplorerTM Lisp Machines. 2 Because of the strongly object-oriented
programming model we envisaged for Poligon, we decided to implement Poligon using the
native Flavors system resident on both of these MIT-based Lisp Machines. This decision
was motivated primarily by a desire for good performance, compatibility, and good support
from the programming environment. Considerable programming effort had already been
spent on the development of the CARE simulator [Delagi 88a], which is also written in
Flavors. This encouraged us to keep a homogeneous implementation with the underlying
simulator.

Poligon nodes, therefore, are implemented as instances of Flavors. We had decided to
trade extra compilation effort in favor of higher performance, so we were able to implement
slots using Flavors instance variables. We knew that the Flavors model itself would only
be adequate as a low-level implementation model. Since the message-passing semantics of
Flavors programs are incompatible with the message-passing semantics that we envisaged
from the simulated hardware, we had to build a number of layers on top of the Flavors rep-
resentation of nodes. F r consistency the classes of nodes on the blackboard were them-
selves represented on the blackboard. This was a departure from the AGE model, in which
the levels were not really on the blackboard as first-class citizens. In Poligon it was de-
cided that classes should be first-class citizens, and that we should have a general
class/metaclass hierarchy in order to describe the complexity of the taxonomy in the prob-

1Symbolics is a trademark of Symbolics Corporation.
2Explorer is a trademark of Texas Instruments, Inc.
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lem domains we envisaged and to implement Poligon's equivalent of class variables. The

benefits of multiple compile-time inheritance also seemed worth having in Poligon.

Flavors Instance Self Mapping Table

Slot Al -Value A I A 1 Value Al

Slot A2 - Value A2 B 2 Value A2

Slot A3 - Value A3 C 3 Value A3

Slot B 1 -Value B D 4 Value B 1

5 Value Cl

Slot Cl - Value Cl 6 Value C2

Slot C2 - Value C2 7 Value D1

Slot D1 -Value Dl

a b
Fig. 4-2. a. The implementation of nodes in Poligon as Flavors instances. To
find a slot, the system must indirect through the Self-Mapping Table to find the offset of
the component flavor in the instance. b. An ideal implementation of nodes in Poligon
would compile all slot references into array indices.

We knew from the start that, in an ideal real-world implementation of the Poligon model, a
high performance blackboard system would compile its nodes into arrays, with slot refer-
ences being compiled into simple array references. This was not done for ease of imple-
mentation. In a blackboard system, such as Poligon, however, one can trade off some
generality for performance and allow optimization through somewhat strong typing and can
make a simplifying assumption about the multiple inheritance on the blackboard. If the
only classes that are ever instantiated are the leaf classes in the class hierarchy, then know-
ing the type of a node will always allow the computation of a slot as a fixed offset (see
Figure 4-2). This implementation strategy would limit modularity, since it would not allow
one to optimize rules that were inherited from abstract classes, but this might be a reason-
able assumption in an implementation used in the field. Even without making this assump-
tion, slot access can be effectively optimized given the type of the node in question, so this
implementation seemed reasonable. Certainly, Poligon as we implemented it was not as
well optimized as this, but at least in principle it could have been.1

Nodes, therefore, are instances of Flavors. These are composed in a set of class declara-
tions specified by the user. The user now no longer has the ability to associate arbitrary

1Multiple inheritance can also be supported with fixed position slot access by the use of block compilLtion

and a graph-colouring algorithm to allocate unique slot locations to all of the slots in the class hierarchy
that is to be instantiated. Using this strategy, however, instances can easily end up with large "holes" in
which slots for unincluded mixins t.ould have been. The optimization of this method so as to minimize the
size of these holes is a non trivial problem but can have reasonable solutions for any given application.
With this method, data space is traded off against speed, whereas the strategy mentioned above trades off
generality against speed.
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properties with arbitrary nodes in the solution space, a clear trade-off between run-time per-
formance and space. 1 An example of this composition of classes is shown in Figure 4-3.

Class Flying-Thing
Slots :

Class Aircraft
Superclasses : Flying-Thing
Slots :

Wheels
Wings

Class Bird :
Superclasses : Flying-Thing
Slots : Weight

Class FAA-Controlled-Thing
Slots : Serial-Number

Class Civil-Aircraft :
Superclasses : FAA-Controlled-Thing, Aircraft
Slots :

Fig. 4-3. Some example class declarations for a Poligon program. Birds and air-
craft are flying things, and civil aircraft are both generic aircraft and things controlled by
the FAA. Classes with names specified after the keyword Slots are the names of slots
added by the class, to which they belong.

Nodes in the Poligon model communicate by posting messages to one another. These
messages are not seen at the language level. Messages are received in a task queue and are
processed one at a time by the nodes to which they were sent. Each node has its own such
message queue, which is implemented as a stream (see Figure 4-4). Streams of values are
one of the interprocess communications primitives that the CARE architecture supports.
Objects running on a CARE machine communicate through these streams, and it is com-
mon practice for these objects to have only one stream that receive messages - the self-
stream. In fact, whenever a.Poligon program refers to a node, it is actually referring to the
remote address of that node's self-stream. It is these remote addresses that are embedded
in user data structures and passed around between nodes and processors.

As mentioned above, it is important for a concurrent programming model to have an effi-
cient method for using stack groups. When we started the development of Poligon we had
no such method, believing that nodes would not be all that expensive, and associated a
fully fledged process with each one. The Poligon model for reading remote values was
based on that of futures [Halstead 84]. This programming model, at least in its general
implementation as used by Poligon, assumes that any process can stop at any point in order
to wait for the value associated with a future, i.e., in order to perform the defuturing coer-
cion. This may not be a good idea in practice because there can be pathological cases that
use up all available memory by creating processes.

1One ,ould gcncraltze this b dlowing bcha ior like si.propertylist mixin as well as fixed position slots,
but we had no great interest in doing this for our applcations. Clearly, slots of this type could not be as
highly optimized as positional slots.
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\ /Messages
other nodes

Task Queue

! U

Node Process
Self-Stream
Associated rules
System slot A
System slot B

System slot Z

User slot 1
Messages toUser slot 2 other nodes

User slot N
Fig. 4-4. Messages sent by nodes arrive in the node's self-stream. The node's
process then processes them one by one, which may result in the sending of other mes-
sages.

Other work on the Advanced Architectures Project has developed a different programming
model that is implemented in a system called Lamina [Delagi 86]. This model has
restartable, run-to-completion code fragments. If a process needs a value from a stream
that is not available, it aborts itself and restarts when a value arrives on that stream. This
means that the process need not hold any state on the stack, so the stack group can be
reused even though a process switch has occurred. There is clearly a need to be able to
pass state onto the process when it is restarted so as to encapsulate the computation at the
point of suspension. This is done by creating a closure that represents the continuation for
the computation. The performance trade-off here is between the size of the heap-allocated
closure that is CONSed, which will eventually have to be garbage collected, and the stack
allocation of state, which is cheap while the stacks themselves are expensive. The pro-
gramming trade-off is between the user being forced to encapsulate state explicitly and state
being recorded automatically.

The advantage of the Lamina programming model is that it allows the user to have a good
idea of the stack resource requirements of his programs. The disadvantage is that the user
has lost the simple procedure-call semantics of a futures-based programming model.
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4.3. The Rule-Triggering Mechanism and the Use of Stack Groups

Messages
from
other nodes

Task Queue
!- -

Node Process

Self-Stream
Associated rules

System slot A
System slot B

I Stack

System slot Z group

Rule User slot 1

User slot 2 ...

Rule Ru - User slot N

Fig. 4-5. Messages asking for slot reads or updates are collected in a task queue
associated with the self-stream of the Poligon node. A process associated with the node
reads tasks from the stream and executes them. Slot updates can cause the invocation of
rules, which start up in the same process.

In place of a central scheduling mechanism, Poligon provides a daemon-driven mechanism
for knowledge activation. We decided at the beginning that we could probably make the
system work by triggering the knowledge in the system as daemons on updates to slots.
The applications written using Poligon demonstrate that this in fact possible.
Unfortunately, project resources did not allow us to test any other, different invocation
strategies.) As shown in Figure 4-5, updates to nodes, as well as requests to read slot
values, arrive in the task queue associated with the self-stream of a node. These are read

'On a number of occasions, for instance, we were interested in allowing rules to be triggered by more than
one slot. This was not implemented because the meaning of this deceptively simple goal is not at all
obvious. What do you do when one slot is triggered but not another? Do you go into a partially triggered
state and wait until the other slot is triggered? If you do, how long do you wait before you decide that the
rule should not fire? All of these issues seemed too hard to tackle when we were investigating so many
other new areas. Any new aystem that is to some extent like Poligon, however, would probably benefit
from allowing rules to be triggered by patterns of slot events.
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by a process attached to the node, which loops continuously, looking for new things to do.
When the process finishes its task, it informs the operating system on its processing ele-
ment and is suspended, waiting to be reactivated when more work arrives. The operating
system has the job of selecting a process from the set of processes with tasks on their self-
streams and starting it up.

As mentioned above, we determined that using an architecture requiring numerous heavy-
weight processes would be a major problem in any Poligon system that we could actually
implement, and so we had to rethink the implementation model. We found that by taking
advantage of the behavior of the CARE processors' operating system it was in fact possible
to find a modified implementation model that would be significantly more efficient.

An important design decision in the CARE machine has been not to allow preemptive
scheduling. This greatly improves the efficiency of the operating system and has some
significant effects on the semantics of programs that run on a CARE machine. Because all
processes communicate by sending messages to each others' self-streams, and because the
operating system cannot preempt a process in a random part of the computation by the op-
erating system, other than for fault exceptions, any given process can be sure that the node
with which it is associated will not have been changed by another process since it was last
activated. This means that in the time between the processing of tasks, the process for the
node has unwound to the top level and has no state left on the stack. The process can be
switched without the cost of a stack-group switch. This model of computation would, in
itself, require the use of only one stack group on any processor, except when the system is
intended to do useful work during fault handling. Nevertheless, the number of active stack
groups would generally be small.

The problem with this model, which is in effect the Lamina programming model, is that it
does not allow the general use of futures. This is because, in the absence of a really smart
continuation passing compiler, it is not possible to construct a continuation for every pos-
sible point in the program where a future might be defutured, and so futures would not be
allowed to be first-class citizens in the source language. They could be used only in very
special ways at special times. This did not seem to be consistent with the programming
model of Poligon, in which we wanted to preserve the abstraction of procedure-call seman-
tics and a clear source language. For instance, we wanted always to be able to write the
expression <<a>> + ob>> at any point in the source code, whether or not the expressions
oa and <b>> involved the defuturing of futures. Because in general a programmer simply
could not know whether any given piece of data would be a future or would contain fu-
tures, we could not expect the user to write complex code to form the continuations for ev-
ery such case.

What we did in Poligon, therefore, was to try to allow the semantics of generalized futures
and yet still try to minimize the number of allocated stack groups. We had originally de-
signed the system on the assumption that a "Poligon machine" would have some sort of
hardware or microcode support for trapping access to futures on strict operators, so that the
compiler would not have to insert special code for this case. Because of the difficulties of
simulating this behavior and the lack of a real Poligon machine, we decided to use the
compiler to try to minimize the amount of code needed to check for futures. Through the
use of compile-time strictness analysis of the arguments on all functions called in a Poligon
application and through the use of type declarations and type propagation, the Poligon
compiler is able to deduce areas of code that could not possibly involve defuturing thereby
eliminating any code that might have to check for this eventuality. This design had the ben-
eficial property that defuturing would still be a lazy process, but it is still not as efficient as
a hardware implementation would be. Thus a Poligon process would block on a future
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only at the latest possible morent, allowing de uraximn possible time for the fut ux to
become satisfied in the background. In fact, futumes were often satisfied by the time the
were touched, and so a process switch and the need for anoer sack group vwas aWoo".d.

The
End

Is

Waitingfor a FuLure.

An ideal implementation of the Poligon computational model would be to start up a process
to service a message running in a default stack group. This process has no initial state
other than the message arguments and the instance variables in the Poligon node. This
means that no special initialization or rebinding has to be done to start up the process. This
need be only a procedure call. In most cases the processing of a message will not block on
a future, so the stack group will unwind back to the top and a aew process can be activated
without significant cost. In the event that blocking on a future is necessary, a stack-group
switch is then performed, swapping out the process and using a new stack group. Stack
group switches are, therefore, done lazily.

Poligon's actual implementation of the equivalent behavior is not done in the same way,
owing to the CARE simulator's design. CARE distinguishes between fully fledged pro-
cesses that can be suspended and those that can only be restarted. It does not allow the
user to decide halfway through a computation that a process is going to be suspendable.
The cost of suspendable processes in CARE is quite a bit higher than that of the lightweight
restartable processes. We therefore implmented a scheme whereby the process that actu-
ally reads the tasks from the self-stream of the Poligon node is lightweight and restartable
one. On the basis of the arguments to the message it has been passed the process tries to
prove to itself that a message can be handled without the need to suspend the process. It
does so on the basis of the arguments in the message and information that the compiler de-
duced about the code fragments to be executed. The process is frequently able to deduce
that the message can be handled % ithout blocking and so it simply executes the task. If it
cannot pro,,e that the message can be handled without blocking it then has to make sure that
the message is handled in a fully fledged process. This is done by acquiring a process
from a resource of free, suspendable processes and then sending it the same message that
was read from the task stream. The restartable process then suspends itself to wait until a
reply comes back from the server process. It does this by suspending itself and waiting,
not on the self-stream that it normally %aits on, but on a stream that is private to these twko
processes. Thus, the lightweight process that seres the Poligon node can be sure that
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taoing will be done o Lc node until de server process returns. This entire procedure is
shown in Figure 4-6.

Light- Heav-
SefwW2eight weight

Task QWW Poces Process

Fig. 4-6. The in'leriemaion of Poligon's process model 1. A m,.essage arives
on the self-stream. 2a. If the message can be hardled it-out blocking. it is processed
imedaely. 2b. if te message may possbly bloc- a heavyweight process is allocaed
and wld to process the inuil message. 3. The original.message is processed, possbly
szvertdlng itwf to waitforfutures. 4. The ser'er process replies to the node's process
by a privae strear.

This implementation model is considerably more expensive than a model that one would
use in a production quality system. It involves the cost of trying to deduce whether a pro-
cess can be handled without blocking, the cost of allocating the server process, the cost of
sending the message to the server process, the cost of performing the stack-group switch to
the server process and back again, and the cost of servicing the message that contains the
reply from the server process. One would not implement such a model on a real machine in
the field.

In retrospect, this design seemed to work reasonably well. Empirically the number of stack
groups that were ever active was generally much lower than the number of Poligon nodes,
and was generally a few times the number of processing elements in the system being used.
This was not always the case, however. Occasionally a system would become very backed
up because of real-time demands or pathological load-balance problems. As a result, a
large number of processors had processes blocked, waiting for replies to messages sent to
one processor that was too heavily loaded to service all the requests. It is clear that the
model used by Poligon breaks down in such a case. Although it still gives the right an-
swers eventually when all pending futures eventually receive the values they are waiting
for, the model does not degrade -s gracefully as one would like in instances of poor load
balance.
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4.4. Reading from Slots

Dogbery: Come hither, neighbour Seacoal. God hath blessed you with a good
name: to be a well-faroured man is the gift offortune; but to write and read comes
by nature.

- Shakespeare, Much Ado About Nothing. act III scene III

The slot read operation in AGE, as mentioned above, was implemented as a function that
used Assoc to find the matching slot being sought in the slot AList of the blackboard
node. In Poligon we decided to use positional slots in order to achieve optimum perfor-
mance.

In fact, we attempted a number of different implementations for Poligon's slots and the
means of reading them. This was done as we learned more about the process of problem
solving in parallel.

4.4.1. The First Implementation of Slots

The initial implementation of slots in Poligon nodes was simply as lists of values (see
Figure 4-7). The user defined the slots that a node would possess in a set of class declara-
tions, which were compiled to produce a suitable set of Flavors for the nodes on the black-
board. For instance, the user could say the following:

Class Aircraft
Slots :

Wings
Wheels

This would define a class called Aircraft, all of whose instances would have two user-
defined slots, one called Wings and another called Wheels. Similar syntax was used in
order to define metaclasses and to mix different superclasses together to implement more
complex classes.

Node

SlotAl - (Value AL., Value A1.2,...)

Slot A2 - (Value A2. 1, Value A2.2, ... )

Slot A3 - (Value A3. 1, Value A3.2, ... )

Slot B I (Value B1.1, Value B1.2, ... )

Slot Cl (Value C1.1, Value C1.2, ... )

Slot C2 - (Value C2.1, Value C2.2, ... )

Slot D1 (Value DI.1, Value D1.2, ... )

Fig. 4-7. The first implementation of slots for Poligon nodes was simply as
value lists.
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Operators in the Poligon language allow the user to read the values from a slot. For in-
stance, foo -wings would read the first value from the wings slot of a node denoted by
foo, and foo0wheels would deliver the list of all wheels associated with foo.

We quickly found that this was not sufficient. Even though the user could define operators
to implement different functionality, because we wanted to support real-time systems in
Poligon, we needed some sort of support for timestamping. Data would arrive out of
order, and we needed some way ensure that the system would not get confused by the
value lists of slots not being in strict temporal sequence.

4.4.2. The Second Implementation of Slots

The next implementation involved a form of automatic time-stamp propagation. Each ele-
ment in the value list of the slot was encapsulated within a data structure that also contained
a timestamp for that value. This is shown in Figure 4-8. These timestamps were set when
the data entered the system and were propagated throughout the blackboard during problem
solving. When the user evaluated an expression, for example, <<a>> + «b>>, and stored
the result in a slot, the new value would be timestamped with the time at which the actual
computation of the expression <<a> + <(b>> finished. Thus, the system could always as-
sociate a time with every slot value. To use these timestamps, we introduced a number of
new operators. Whereas previously an operator such as "-" would simply read the first
value from the value list the new operator "- T" would sort all the values in the slot if they
needed to be sorted and would then return the most recent value according to the times-
tamps associated with the values in the slot.

Node Slots

SlotA1 Values (<42, at t=10, (<100, at t=8 , ...)

Sorted-p -l-t

SlotA2 Values (c:foo, at t=l>,, :bar, at t=5>, ...)

Sorted-p A nil

SlotA3 Values ("((.)), at t=10, ((..) (..) (..)), at t=6>)

Sorted-p-- t

Fig. 4.8. The second implementation of slots for Poligon nodes caused each slot
to contain a slot object that had a list of values and aflag that indicated whether or not the
values were sorted.

We also found early on that the user often read a number of slots from the same node
throughout the body of a rule. This was problematic, because an expression such as
foo wings = f oowings might not be true if the value of the wings slot was modi-
fied by the time the second read was performed. We needed a way to capture a consistent
view of blackboard nodes.
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This was addressed by the implementation of a block read construct. Since the program
was already sending a message to ask for the value of one slot, the marginal cost of asking
for a number of slots at the same time was reasonably low. In Poligon it therefore became
possible to write expressions such as foo& - wings& -wheels in order to read the values
of the wings and wheels slot within the same critical section. This formalism proved to
be very useful and was used in all later designs of slot-reading behavior.

The second slot implementation mechanism worked reasonably well but we found that it
was rather expensive and suffered from some major flaws. It was frequently the case that
the user's data already had timestamps of its own, which were often at variance with the
timestamps that the system had imposed. In addition the user often preferred that the val-
ues be sorted on a basis other than the time in the timestamps. This led to the inclusion of
an operator that allowed the user to force any value into the system timestamp slot whether
it represented a time or not. A secondary flaw was that the user often wanted to index the
data in a slot. For instance, when a rule was triggered and was interested in something that
happened at time t, it would frequently want to know about other things that happened at
time t, or perhaps about things that happened at t-1. Getting data on the basis of such an
association was not simple to do using the simple block read mechanism described above,
since it involved getting all of the values in the slot, possibly from a remote location, and
then searching them for the data required.

4.4.3. The Final Implementation of Slots

In developing our third approach we decided that operations like sorting and indexing were
fundamentally important to the ease of programming a Poligon application, but that the
system should not impose any unreasonable restrictions on the things that could be sorted
or the things that could be indexed. It was therefore decided that these operations should
be user defined, but also that Poligon should provide the user with some sophisticated and
abstract mechanisms for the expression of his program.

Each slot was implemented as an object. In fact, a different Flavor was created for each
slot of each class in the system. This allowed the user to specify behavior in a highly fo-
cused, per-slot manner, that is, each slot could have specialized behavior associated with it.
For example, the user could specify that the values of a slot were to be sorted by a particu-
lar predicate, or that they were to be accessed as mappings from indices to values, using a
particular index function, or both sorted and indexed. Thus the user could write the
following code:

Class Aircraft
Fields :

Wings
IndexedBy : 'Wing-Side

Wheels :
SortedBy : '<
KeyedBy : 'Tyre-Size

As before, all instances of the class Aircraft will have two slots, but in this case it is
possible to find a wing in the slot Wings by looking up which side the wing is on. It is
also possible to view the Whee Is slot as a sorted list of wheels, which is sorted according
to the tyre size of those wheels (see Figure 4-9). The "." operatoi mentioned earlier was
modified to allow the specification of an index, so the user could get the left wing of a node
foo with the expression fooewings At : Left, and could get the smallest wheel with
just the expression foo - wheels.
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Aircraft Slots

Values (#<Wheel Left> #<Wheel Tail>)

Sorted-p -. t
Prkedicate--- #'>

Key - #'Tyre-size

-(#<Wing Left> #<Wing Right>)

Indexed By - #'Wing-Sid le
Dictionary- :Left

Fig. 4-9. The final implementation of slots for Poligon nodes made each slot
point to a slot object, which was of a specialized type unique to that slot. Wings can be
seen to have dictionary-like behavior, and Wheels are sorted according to the size of their
tyres.

This implementation was more expensive than is strictly necessary. Suitable compilation
could expand the state associated with the slot objects into the node itself and could reduce
an access simply to an array offset. This would not be in any way incompatible with the
compilation of slot accesses into fixed-position array accesses. Similarly, the methods as-
sociated with the operations supported by each of these slot types could be fully compiled.
In fact, there is no particular need to use methods, in the Flavors sense, since the combined
methods for each slot are known at compile-time and no complex method combination is
required. It seems likely, therefore, that although this is a considerably more expensive
implementation than the original AGE use of a value list, it could be made reasonably effi-
cient and, more important, is considerably more useful in a parallel environment.

4.5. Writing to Slots

The implementation of writing to slots in many ways mirrored the implementation of read-
ing them. This is by no means surprising. The major difference between the evolution of
the slot write mechanism as opposed to that of reading slots was that the the ability to write
multiple slots at the same time was in Poligon from the start. We did this because the same
was also the case in other blackboard systems like AGE.

4.5.1. The First Implementation of Slot Updates

As mentioned previously, Poligon's slots originally had no structure to speak of; there was
nothing particularly special about the slot-updating process. AGE supported a pair of fre-
quently used slot update procedures called $Modify and $Supersede. $Modify tacked a
new element onto the front of the value list of the slot being side-effected, and $Supersede
had the effect of overwrote all the elements in the value list. In effect, $Modify was an op-
timization for a frequently used case, and $Supersede was an implementation of the general
case. It was possible to read all the values of the slot, perform an arbitrary transformation
on them, and then write out a new value list at the end at the end of the rule's execution.
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We did not think that this would be sufficient in Poligon, so we implemented the function-
ality of $Modify and $Supersede as slot update operators, which could be user defined.

The result was that these operators, at least with their AGE semantics, were almost useless.
For the reasons already described, things arrived in the slots out of sequence. The Poligon
equivalent of the $Modify operation, which mirrored the "-" operator for slot reads, would
not really do the "right thing" because one would prefer that the value be put into a more
specific place than just the front of the value list. This was due to the fact that the value
lists were implicitly time ordered. The Poligon equivalent of the $Supersede operator
proved to be almost useless on account of a hidden critical-section assumption in the AGE
model. It was not possible to read all the values of a slot and then write a new list back out
again because there was no guarantee that the slot had not been side-effected between the
time the slot was read and the time it was written. Writing out a new value list would then
destroy any new results that were put in by other rules during the computation. 1

4.5.2. The Second Implementation of Slot Updates

When the slot read mechanism was changed to support timestamping (see Section 4.4.2],
we then had a way to avoid the problems we had had with slot updates. Because so much
more data was now available to allow the programmer to perform more sophisticated slot
updates, there was an explosion in the number of Poligon's slot update operators, which
would, for example, remove an element if it was already present or add a new element un-
less it was already present and was not Nil.

This added considerable complexity to the programming task. The user had to know about
the semantics of the operators that the program would use to read a slot in order to pick the
correct operator that would write that slot. A better abstraction was required. We also no-
ticed that many of our slot update operators seemed to be explicitly fault tolerant. They
were all trying to do the "right thing" in the event that the shape of the data in the slot was
not quite what was expected. This proved to be an important observation, because it al-
lowed us to develop a much more satisfactory programming methodology and then to build
our slot update mechanism around it.

4.5.3. The Final Implementation of Slot Updates

All science is either physics or stamp collecting.

- Ernest Rutherford.

Our final implementation of the slot update mechanism used the methodological idea of"smart" slots. As noted earlier, slots had already been modified by the inclusion of some
general mechanisms so that they could be read in ways that were highly application spe-
cific. New mechanisms were implemented to support much more focused slot update be-
havior. The user could now express ideas like remove this element if it is still there, and
add this element if it is a new one in a manner that was both declarative and abstracted out
into the class declarations. For instance:

IThis assumes that the %hole bodies of rules are not executed within critical sections on the nodes that
trigger them. This is discussed at length in Section 4.7.
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Class Aircraft
Fields :

Wings
RemoveIf : 'Still-Present

Wheels :
InsertIf : 'Not-Present

In this example the user defined functions Still-Present and Not-Present will be
called whenever the program attempts to put new values into these slots or to remove them.
In fact, Poligon's default behavior is to do reasonable things in such cases, but this serves
as a simple example. The crucial point is that the slots of nodes are now expected to be re-
sponsible for their own upkeep. They are intended to have evaluation functions that ex-
press the intention or purpose of the slot and thus are capable of assessing any update that
is requested and deciding whether to perform it, ignore it, or perform some different up-
date. This results in a sort of local hill-climbing behavior, which allows some Poligon
applications to iterate toward a globally reasonable solution. These functions are defined
and stored in the same per-slot manner that the sorting and indexing functions are for read
operations. They are just extra instance variables in the slot objects that represent the slots.

The functions that the user can specify can be arbitrarily complex. This means that the user
has the ability to put arbitrarily expensive code into the slot update critical section. This
will clearly lock the node for a long time, but it is better to do it slowly and right than
quickly and wrong.

4.5.4. Test-and-Set

There is one more point to discuss regarding slot reads and writes: we found it necessary to
implement a test-and-set operation. Although Poligon nodes are now responsible for keep-
ing themselves reasonably coherent, that does not help us if we really need to perform
some sort of atomic read/write operation, such as one might want when implementing locks
or performing accuracy-critical database operations. Without some sort of atomic test-and-
set operation, one would not want to use Poligon to implement a bank transaction system.

We therefore implemented such a test and set operation. The user can now express ideas
such as the following:

foo-wings
Unless : fooewings = 2
Updated Fields

wings <- 2

In this case, if the node foo has two wings then this value is returned; if it doesn't, then
foo is given two wings and the original number of wings is returned. The test-and-set op-
eration has been used only twice in Poligon applications, but in these cases there didn't
seem to be a way of implementing the program without it.
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4.6. Creating Instances

2=

2

Eagar finds that unmanaged instance creation can lead to the wrong answer in a concurrent
problem-solving system.

The creation of instances is something that serial systems typically do not handle in a par-
ticularly sophisticated manner. The reason for this is that users generally write their
knowledge sources so that they are large enough that they know that they are doing the
right thing when they create a node. This is, in effect, using large critical sections in order
to guarantee that the blackboard is consistent throughout a node creation operation. If
knowledge sources are not large, however, especially in processing, it is quite probable
that they will create multiple nodes representing the same real-world object. This happens
frequently in a parallel blackboard system, and so some mechanism is needed to deal with
it.

New Instance of Aircraft
Unless :

Associate (Id-Number, Aircraft@Cache,
:Return #'Second)

Updated Class Fields :
Cache <- List(Id-Number, The-Created-Node)

Initialization
Wings <- 2
Wheels <- 3

Fig. 4-10. Poligon language source code to create a new instance. If there is an
entry in the cache slot of the class node called Aircraft, which is a list of the form ((id
<node>) (id <node>)), then the node is returned. If there is no such entry, a new node is
created. The new node has its wings and wheels initialized, and the class node's cache slot
is updated so that it has an entry for the new node. The node that has just been created is
referred to by the name The-Created-Node.

Two options were considered. Either one could manage the creation process so that only
the needed nodes are created or one could add extra knowledge so that the system could
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reason about the presence of a number of nodes representing the same real object. The lat-
ter would, in the general case, require application-specific knowledge in order to achieve
this goal, whereas the former could be implemented in a manner that provides a domain in-
dependent means of handling node creation. We picked the strategy of managing node
creation, knowing that the price would be serialization.

Node

1. Node triggers rule

3. Creation message

Condition
Class updates
Instance initializations

Class Node 5. Initialization Message New Instance
4. Instance initializations I

IF condition h 6. Initialize slots
THEN

Create node,
Class updates Cache entries

Existing Instance Existing Instance

Fig. 4-11. Managed node creation in Poligon. 1. An update to a node triggers a
rule. 2. The rule that fires decides that a new instance must be created. 3. A message
containing the condition, class update, and initialization closures is sent to the class node
for the class to be created. 4. If the condition allows it, the new node is created, the ini-
tialization closure is evaluated and passed to the new instance (5), and any class updates
are performed. 6. When the initialization closure arrives at the new node, the new node's
slots are initialized.

After some experimentation, we developed a fairly complex but general node creation and
initialization mechanism for Poligon. We needed to be able to allow the conditional cre-
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ation of nodes because, in the general case, a node that represents the thing that we're inter-
ested in may already have been created. We needed to be able to construct mappings from
identifiers to nodes. These mappings have to allow us to determine whether we already
have a node to represent a given real-world object. Finally, we needed to be able to initial-
ize the new node appropriately and make sure that all the right things are executed atomi-
cally.

An example piece of Poligon code to create a node is shown in Figure 4-10. The way that
this code works is explained below and shown in Figure 4-11.

First is sends a message to the class node that represents the class of node to be
created. This message tells the class node that a new node is to be created or an
existing node is to be returned. The message contains three (possibly null) closures
as its arguments: a condition closure, a set of class node updates, and an initializa-
tion closure for the node to be created. These closures close over the environment
of the rule execution so that the program can make reference to expressions in the
context of the rule as well as to expressions in the context of the class node or the
node being created. Any expressions that require references to be made to anything
other than the class node or the node to be created are evaluated before the message
is sent. This allows the class and the new node to execute their code without
blocking. The expression that asked for the creation of the node returns immedi-
ately with a future to the new node. A rule, therefore, need not block in order to
create a new node.

" When the message is processed by the class node, the condition part, if supplied, is
executed. The condition is executed on the class node because, in the general case,
the expressions that make up the condition will want to make reference to caches
that are held on the class node.

* If the condition evaluates to Ni 1, a new node is created and entered into the class's
list of instances (this process seems reversed, but it actually works.) If the expres-
sion is not N i 1 it is taken to denote a preexisting node that represents the solution-
space component (node) that we really want.

" If a new node is created, the initialization closure is evaluated. This is a closure that
is executed in the context of the class node so that reference can be made to class
slots such as the identifier cache. The result of the evaluation of this closure is an-
other closure that is sent to the new node. It is this second closure that actually per-
forms the initialization of the new node's slots. By this point Lhe closure will have
picked up all the context it needs from the originating node and the class node. Any
rules associated with the slots being initialized will fire for the new node.

* The newly created node is seen by the class node as a future. The class update clo-
sure is now invoked with this new node visible. The update closure is therefore
able to add the new node to the id cache, even though that node may not yet have
been created.
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Eagar closes over his environment.

This instance creation mechanism is very general and works reliably, but a number of pos-
sibly unnecessary overheads are associated with it. For instance, it may not be necessary
to manage the creation of the node. If the node is being created as the result of an unique
piece of signal data, the programmer knows that only one node will ever represent this ob-
ject. Serializing through the class node is unnecessary in this case. In practice, we found
that creating nodes to represent low-level objects to represent signal data tended to overload
the class node if the instance creation mechanism outlined above was used. Thus, we im-
plemented an optimized form of node creation to allow for this special case. This is shown
in Figure 4-12 and works as follows:

• It create an instance directly without reference to the class node and immediately
returns with a future to the created node.

° It initializes the node only from the context of the invoking rule, not from the class
node.

" It sends a message to the class node telling it that a new node has been created.

Here node creation is unmanaged but faster, but there is another, sometimes undesirable
consequence of this operation. Poligon supports operations that can be performed on all
instances of a class. Because node creation happens in parallel with the notification of the
new node's class, it is possible for the message that notifies the class to be delayed and
thus for other pieces of knowledge to execute under the assumption that they are referring
to all the instances of a class, but actually they are missing the newly created one. This
generally doesn't seem to be much of a problem in Poligon applications, since one usually
has to use the full, managed node creation mechanism anyway, in which case the problem
doesn't occur, or one's program is generally written so as not to be brittle to this sort of in-
consistency.
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Node

Node triggers rule

l aCreation and initialization message
.... Instance initializations I

New instance notification

Class Node New Instance

Update instance
list 6. Initialize slots

Elements in instance list

Existing Instance Existing Instance

Fig. 4-12. Optimized node creation. A rule triggered from some node decides that
a new instance should be created. The rule invocation creates the instance directly. The
class node is notified about the new node by having afuture to the new node sent to it and
the class node can then add the new node to its instance list.

4.7. Rule Invocation and the Context of Rule Invocation

Many assumptions about the granularity of the Poligon system were made throughout the
development of the system. Perhaps the most significant of these was the decision to allow
concurrent rule execution on blackboard nodes. The cost of process creation and/or
switching is always going to be significant in the design of a system like Poligon; so the
decision that concurrent rule execution should be allowed on each blackboard node neces-
saril, carried with it the assumption that nodes would, in general, ha.ve a lot of applicable
knowledge at any given time. A second assumption was that the cost of the computation
performed by that knowledge would be significantly greater than the cost of rule invoca-
tion.
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In this section we discuss the implementation of the rule invocation mechanism in Poligon
and other related topics.

4.7.1. The Triggering of Rules

A daemon triggers a rule.

As mentioned above, rules are triggered as daemons on the slots of nodes. The slot that
triggers a rule is defined by the programmer and is fixed at compile-time.1 It is not possi-
ble, however, simply to fire the rules as soon as the update that would trigger a rule is
made. This is because Poligon supports the ability to update a number of slots
"simultaneously." To allow rules to be activated before all relevant slot updates had been
performed would open the door to very counter-intuitive behavior. Poligon, therefore,
collects the significant events on slots as the slots are being updated, and when all of the
updates have happened, activates the interested rules.

The evolution of the slot update mechanism was discussed in Section 4.5. A consequence
of this implementation is that the system always knows.what changes to a given slot were
made when it was updated. For instance, if a new wheel were to be added to an aircraft,
then the node being updated would remember the node that caused the update and the slot
that was updated, the new wheel - or, actually, the set of new wheels, which in this case
is a singlton set.2

Once this information has been gathered for the updated slots, the node is free to trigger the
associated rules. For this the node must create contexts.

1This is not the case for expectations, which are described in Section 4.7.4.2A deficiency of the implementation in Poligon is that there is no way for a rule to recognize whether the
values that it is passed, which tell it what caused the rule to fire, are values that were added to or removed
from the slot. The rule has to work this out for itself. Clearly this would be a small thing to fix but is
worth noting here, since we have found programs that vanted to trigger rules both as a resuit of inserting an
element in a slot and as a result of removing values.
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4.7.2. Contexts and Pseudo-Contexts

In AGE, the context in which a rule is executed is that of the knowledge soutce and the
knowledge source bindings. The knowledge source knows only the token tha riggezed it
and the node that caused the triggering.

Update
message for
user slot I and Node Process
user slot N Process

Self- rearn
Associated mvs

System slot A

System slot B Wihen parts are
evaluated by

t'7 node's process
System slot Z

Rules triggered by Rule User slot 1 Pseudo-

slot updates cause H context

context creation I

Rule W Rule User slot N Pseud-

Modified values, rule Psu
and slot name recorded
in context object

Fig. 4-13. A node receives an update message. The updates, when processed, cause
the triggering of the rules watching the slots that were updated. When a rule is triggered.
a pseudo-context is created and the When part of th" rule is evaluated locally.

In Poligon we decided early on that knowledge sources were too coarse grained tc give us
the performance we wanted. Con,equently, we wanted at the ver) least to execute rules in
parallel; we wanted to compile away the knowledge sources, preventing them from being
the scheduling units that they are in serial blackboard systems, and to incorporate into the
tale any tate that the knowledge source might have had. Poligon has functi.nality equiva-
lent to knowledge source bindings called definitions, which are discussed in Section 4.8.
Moreover, a number of existing blackboard systems have a more substantial amount of
context when their knowledge sources are activated than was available in AGE. BBI's
[Hayes-Roth 85] knowledge source activation records (KSARs) are an example of this. If
we were to run our rules in parallel, we knew that we needed some representation of the
rule's evaluation context, and that we had to associate a process with each rule in order to
execute it. In addition, because Poligon runs on a distributed memory system, each ele-
ment of which is effectively a uniprocessor, the activations of rules would, in the general
case, be running on different processors from that of the node, which caused the activation
of the rules. Each rule therefore runs in a different address space from that of the triggering
node (see Figure 4-13). The objects that represent the activation of a rule in Poligon are
called contexts.
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CDOnXts a= FHaVo5S instancs tlMt contain theC fo!1oa-ing infonnaiotr

0 Me tiging nod

V The rule being triggered

0 Thm values of tde so that caused the rule to trigger

STIhe definitions fo the rule being executed

Recog.nizing that the cost of a process switch to a context would be significant and that the
reading of values from the focus node would be expensive for a context on a remote pro-
cessor, we wanted some means of filtering out rule activations 1before they became too ex-
pensive. For this we used a cheap test called the When part of a rule. Poligon knowledge
sources have no preconditions, since they are compiled away, but rules needed a cheap
means of determining whether they were applicable or nol The condition part of a Poligon
rule is therefore split into two distinct components: the When part and the If part. The
When pai, is executed by the node for which the rule is triggered. This means that no pro-
cess switch is performed to evaluate the When part and that slot reads to the node can be
fast- The If part of the rule is executed cnly as long as the When part succeeds and is exe-
cuted in a different process by a context object- It is therefore useful for the rule to do as
much cheap filtering as possible during the When part and to perform enough reads to slots
on the focus node in order to prevent he context from having to read from the node again if
that is possible.

If we were to allow the node to re, i values from other nodes during the When part, the
node would have to be able to block until the results came back. This seemed undesirable,
because it cnuld cause areas of the evolving solution to lock uo for unpredictable periods of
time. We taus decided not to allow the When parts of rules - or any parts of the user's
program that are executed on the nodes themselves - to make remote references. These
are only allowed during the If or Action parts of rules, which are executed by contexts.

In order to be able to evaluate the When part of the rule, the node must create a context for
the When parts execution. We wanted to avoid the cost of process switching during the
When part, so the node creates an object called a pseudo-context. A pseudo-context is just
like a context, only it executes within whatever process invokes it. As a result, any state
developed during the evaluation of the rule's When part is recorded in the pseudo-context.
If the When part evaluates to true a context is invoked and is passed the state in the pseudo-
context as part of its initialization message.

The reason pseudo-context objects are necessary is that the When parts of rules can contain
references to definitions, which are described in Section 4.8. In retrospect, we can see a
justification for having yet another sort of precondition, one that does not allow the use of
definitions. The creation of the pseudo-context for the rule, although much cheaper than a
process switch to a context, Aill carries a significant cost. If we could do some prefiltering
without this cost, we could expect better performance. Substantial optimization of the
pseudo-context creation mechanism could be made, but avoiding this altogether, if possi-
ble, seems worthwhile. A smarter compiler might, perhaps, have done some flow analysis
on the source program and created the contexts lazily. This w, ald have required a sub-
stantial reimplementation of the rule activation mechanism in Poligon and so was not im-
plemented, but it could %,ell be a useful strategy for any future system built along these
lines.
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4.7.3. Rule Execution After the When Part is Evaluated

When the When part of a rule is evaluated and is true, the node that started up the rule must
invoke a context to process the rest of the rule. Normal rules come in two forms in
Poligon: if-Then--Else), or If-Then-Case-Else. it was found early on that blackboard
systems commonly have sets of rules whose form is of the following type:

Rule 1:
If <some condition>>
Then <asome action>

Rule 2:
if Not [<<some condition>>)
Then <<some other action>>

This is typically not too much of a problem in serial systems because the cost of evaluating
such a pair of rules is often reasonably small, but the constraints of a parallel or high-per-
formance system make it desirable to avoid unnecessary rule invocation as much as possi-
ble. It is not the cost of the user code that one wants to avoid, since the code will be eval-
uated nevertheless; it is the evaluation of the system code that creates the contexts for rule
invocations and that starts up the rule. In the previous example, it is clear that the two rules
are mutually exclusive. They could, therefore, be rewritten in the following form:

Rule 1:
if <some condition>>
Then asome action>>
Else «some other action"

Poligon supports just such a rule representation and, in fact, generalizes it so that the fol-
lowing rule is possible:

Rule Watch-for-changes-in-wheels
Class : Aircraft
Slot : Wheels
Condition Part
When : The-Wheels > 0
If : The-Aircraft-is-airborne
Select :

If The-Wheels = 3
Then :Land-ok
Else :Belly-land
EndIf

Action Part
:Land-ok

<<we have enough wheels to land on the
undercarriage>>

:Belly-land :
<<do whatever you must to land on your bellyD

Otherwise Part :
<<we haven't taken off yet so the change must be
due to the maintenance crew

This trivial rule takes advantage of the mutually exclusive execution of its action parts. For
any given change in the number of , heels on the plane the rule will be invoked only once.
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If we had a number of rules that watched for this change, two rules might start up because
the plane did not have enough wheels, but by the time one of them actually came to look at
the plane and do something with it, the other rule might have caused more wheels to be
added, thus confusing the first rule. The form of rule shown above has proved to be pow-
erful, useful, and efficient.

The Poligon compiler causes the rules that the user expresses to be split up into a large
number of functions and methods. The objects representing the rules in the system have a
number of slots that refer to the code to execute the different parts of the rules. A very
simple piece of code run by the context object looks at the rule object that represents the
rule that it is to fire and invokes the relevant parts of the rule as appropriate. This is shown
in Figure 4-14.

In designing the Poligon language, we did not want the user to have to worry about picking
the parts of the program that would run in parallel and those parts that would run serially.
To this effect we designed the language so that the user expressed those parts to be exe-
cuted serially rather than those to be executed in parallel. The system was then at liberty to
execute any other code fragments in parallel if this seemed appropriate. Clearly we wanted
to execute as much as possible in parallel, wherever it would be beneficial. Our intention,
therefore, was to execute components of the action parts of the rules concurrently and
without any synchronization.

Processing Element 1 Processing Element 2

Node Process Process

Self-streamn
Associated rules

System slot A

System slot B When parts are
Ievaluated by Context

node's process

if..User slot I u P f..

Uontext Context is henUser slot 2 activated re .
... from

pseudo-
User slot NPsudo- therwisecontext context

after"'

When part evaluation can When part
cheaply read local slots , succeeds

Psudo-
ntext

Fig. 4-14. When the When part of a rule evaluates to true, a context object is acti-
vated, possibly on another processing element, to evaluate the rest of the rule. Cheap ac-
cess to local slots can be made during the When pars execution. Slots can be read from
the focus node during the evaluation of the rest of the rule but this is discouraged.
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The following fragment of Poligon code expresses updates being made to two different
nodes:

Action Part
Changes :

Change Type : Update
Updated Node : oaircraft I>
Updated Fields :

wheels <- o(a new wheel>
wings +- oleft canard>, (right canardD

Changes :
Change Type : Update
Updated Node : (aircraft 2>>
Updated Fields :

wheels (-- otail wheel
wings c- onew left wing>>

We wanted the execution of these two updates not to be held up by each other. What we
did was to make the Poligon compiler extract the references to any definitions (see Section
4.8) from the expressions in the action parts and evaluate them whenever possible before
entering the actual expressions that perform the updates. In order to perform the updates,
the Poligon compiler tries to deduce the best place in which to evaluate the change compo-
nent. In the cases above, each change will be evaluated on the respective aircraft nodes. 1

A message is sent to the node to do the computation, specifying a method that will be used
to make the update and containing a newly CONSed pseudo-context that contains the def-
initions that are to be used in the evaluation of the action part. The use of a pseudo-context
in this case allows a regular mechanism for the evaluation of definitions irrespective of
where or when they are evaluated. The compiler has already computed which definitions
will be needed in the execution of the action-part clause so only these are sent over. Figure
4-15 illustrates this sort of slot update operation. 2

1There is an assumpion here that the code to be executed on these remote nodes will be reascnably cheap.
It is left to the user to make sure that expensive expressions are factored out as definitions thaL are evaluated
before the update message is sent.
2This whole design strategy may have been flawed. The creation of pseudo-Lontexts for the definitions
passed to the nodes to perform the action parts is costly. It would probably be better to compile the action
part into methods that accepLed the dcfinitions as arguments. This, however, would have the consequence
that all definitions would definitely have to be evaluated before any part of the action could be executed. As
a result, the lazy semantics of the definitions would be lost if any definition references were made in
expressions with condilional clauses. This strategy clearly requires more thought.
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Processing Element 1 Processing Element 2

Prrocess

conystem slot B

Update messarue
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to encapsulate stt
needed for update i "Self-streamn

Context
Associated rules

System slot A
System slot B

System slot Z

'Otherwise User slot I

User slot 2

User slot N
__J

Fig. 4-15. When an update is required, a pseudo-context representing the required
state from the current context is passed along with the update message to the node to be
updated. The update is performed in the environment of the pseudo-context. Copying the
state in the context allows concurrent execution of action parts without contention for the
context in which the rule is executed.

When the message for the update arrives at the node to be modified, it executes the neces-
sary code to perform the update, extracting any definitions that it may need from the
pseudo-context that it has been passed. As mentioned earlier, the compiler has already de-
termined which definitions will be needed in order to perform the update. At run-time the
context that evaluates the rule knows which of these definitions have indeed been evalu-
ated. As long as all the needed definitions have been evaluated there is no problem - the
update is made, and nothing more needs to be done. A problem arises, however, if not all
of the definitions have been evaluated because a deadlock can occur if some special mech-
anism is not incorporated. This is described below.

As was already mentioned, the only way Poligon allows the user to express serialization is
by the serializing of the action parts of rules. The following code fragment executes the
changes requested serially;
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Action Part
Changes :

Change Type : Update
Updated Node : «(aircraft 1D
Updated Fields :

wheels -- <a new wheel>
wings <-- <<left canard>, <(right canard

Change Type : Update
Updated Node : <(aircraft 2
Updated Fields :

wheels <- <tail wheelD
wings <- <new left wingD

Here the system must wait until the update to <aircraft 1> has finished to execute the
second change. In turn, the context executing the rule must wait for confirmation that -he
first update has occurred from <aircraft 1> before it can perform the update to
<<aircraft 2>. The context, therefore, waits on the stream from which it expects to get
the reply confirmation. This is not a problem unless the pseudo-context that was passed on
to perform the original update has not already evaluated the required definitions. If such is
the case, the execution of the update will require a fully fledged context in order to execute
the action part because the code for the evaluation of the outstanding definitions is, by
specification, allowed to block for futures at any point.

Since the design of Poligon requires that code executed on blackboard nodes not be al-
lowed to block, the execution of the update has to punt to another context. It is not possi-
ble to ask the original context to evaluate the missing definitions because that context is al-
ready blocked, waiting for the reply from the update that is in trouble. This is a deadlock
condition. 1 A new context is created to perform the update instead, a relatively expensive
process; and although the semantics of a rule that punts in this way are very similar to one
that does not punt, the system issues a warning message that this is the case so that the
programmer can rewrite the rule to force the evaluation of the missing definition. This pro-
cess is shown in Figure 4-16.

1Other mechanisms for deadlok aoidance arc possible here, this was just the simplest mechanism gicn
the strongly futures-based implementation model of Poligon.

4-261



Processing Element 1 Processing Element 2
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Fig. 4-16. A rule executing in the context on processing element 1 requests an up-
date of a node on processing element 2. The pseudo-context that is passed to the node to
be updated does not have enough of its definitions evaluated, so it allocates a new context
on p,'ocessing element 3 to evaluate the missing definitions and to finish the update.

Once the update has been performed either on the node using the pseudo-context or through
the agency of a new punted-to context, the original context that is evaluating the rule is sent
a message to confirm that this has happened. The context can then synchronize correctly
and continue with the evaluation of the serial parts of its rule.1

4.7.4. Expectations

The farther the experiment is from theory the closer it is to the Nobel Prize.

- Fr6d6ric Joliot-Curie

Mention was made in Section 4.7.1 that the slots to which rules are attached are defined at
compile-time. The exception to prove this rule is discussed in this section.

I In retrospect, this design is inadequate, but deciding on a good implementation for these semantics is
difficult. A change to the specified semantics of the language is likely to be the best way around these
implementation problems.
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An expectation mechanism, a common part of blackboard systems, allows the user to ex-
press the fact that some particular event is anticipated. This allows model-based reasoning
to focus the attention of the program on places of importance. We wanted to have some
way to take advantage of such model based reasoning in Poligon. This section describes
the implementation of Poligon's expectations.

Poligon's expectations are dynamically allocated rules. Just as normal Poligon rules are
associated with slots at compile-time, expectations are associated with a particular slot on a
particular node at run-time. Expectations allow the effective focusing of attention on a par-
ticular node while still saving the overhead of associating that rule with all nodes of the
class involved. Moreover, state in the rule that initiated the expectation may be used to
specialize the rule being allocated so that the behavior can be more highly focused.
Because a real-time blackboard system is just as likely to be interested in something not
happening as something actually happening, a timeout mechanism supported by Poligon's
expectations allows them to wake up after a predetermined time, knowing that they have
timed out.

Expectations are represented as structure objects. When a rule decides to post an expecta-
tion, it sends a message to the node that will be focused on asking it to record the new ex-
pectation. When the expectation is formed, the programmer has the option of defining ar-
guments to the expectation rule and of passing in extra conditions for the When and If parts
of the rules. These allow context-specific state to be allocated with the expectation. For
instance, if an aircraft is expected to land at a specific airfield, one might post an expecta-
tion on the airfield that asked the airfield to look out for aircraft landing. One would also
pass it the specific aircraft as an argument to compare with arrivals so that it can know it
has noticed the aircraft that is interesting to the program.

Eagar's Fern Bar

Expectation.

Extra slots in the expectation data structure allow the user to specify whether the expecta-
tion is active or not or the number of times that the expectation is to try to fire. This is im-
portant because it may be that an expectation is valid for only a highly focused set of cir-
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cumstances. For instance, the aircraft in question can only land after it has had enough
time to fly to the airfield. We do not want expectations to fire off all of the time, and, if the
particular aircraft does land, we want the expectation to decouple itself from the node it is
watching. All of this is possible in Poligon's expectation mechanism.

Similarly, we may want to know if an event has occurred after a certain time, if the aircraft
fails to land at the specified airfield after a given period, for example. This would indicate
that our model of the aircraft's actions was wrong and we have to reevaluate what is hap-
pening. Such an occurrence is also expressed when the user posts the expectation. The
timeout that is to be made is encapsulated on the node being watched, and the set of time-
outs that are still pending is examined each time the domain real-time clock ticks. It is an
attribute of all Poligon nodes that they can know the real time and that they can be sensitive
to clock ticks. When the clock ticks past the time specified by one of the pending timeouts,
the rule associated with the expectation is fired and its Timeout Part - a component much
like an Action or Otherwise Part - is executed, allowing the program to take whatever cor-
rective action is required.

This timeout mechanism does have a problem, however. In order to work reasonably well,
either the system must be lightly loaded or the timeout duration must be long with respect to
the time scale of events in the system. This is because a Poligon program can cause the
processors on which it runs to become highly and unpredictably loaded, resulting in signif-
icant delays in computation. Thus, a timeout might trigger simply because the program
was being held up, not because an event failed to occur, i.e., the plane failed to land.
Clearly, a Poligon program must not be brittle with respect to timeouts triggering in this
way.

At this time, Poligon's expectation mechanism has never been used in an application. This
could cause one to lose faith in its usefulness, but we still have some hope for the value of
this mechanism, since they may indeed be more useful in a genuinely real-time environ-
ment. The knowledge that we implemented for our applications was already expressed in a
strongly non-model-based manner, and the real-time aspects of the applications were not
really concerned with producing responses that the real-time clock might have triggered.
For this reason, the timeout mechanism was not useful. Similarly, in order to be able to
compare our experimental results with those produced by the Cage [Aiello 88] and Lamina
[Delagi 88b] projects, we were compelled to make the application's problem solving behav-
ior much like that of the others. Because of the way in which the use of expectations af-
fected the problem-solving process, we could not easily produce results comparable to
those of the other implementations, so use of the expectation mechanism was removed.

4.8. User Code and Definitions

As you will recall, Poligon supports a mechanism that allows the programmer to express
ideas much like knowledge source bindings in an AGE program. These are called defini-
tions.

The idea behind definitions was to support the functionality of AGE's knowledge source
bindings without suffering from their defects. Nevertheless, Poligon's implementation had
a set of defects of its own.

We decided early on that definitions should be lazily evaluated. This was due to an Zes-
thetic preference and a desire to around a deficiency in AGE's implementation. In AGE it
is common to define a knowledge source binding with a null value at the knowledge source
level and then to setq in a value for it if the value is needed. This substantially compli-
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cates the program and obscures the programmer's intent. The plan for Poligon was to have
a means of associating names with values and having the expressions that delivered those
values execute once at most, but not at all unless the value was needed.

We implemented definitions by making a mapping from names to structures in the context
objects that represent the invocation of rules. Thus, for each defined name there is an entry
in an AList that associates with that name a value or a token denoting that the definition has
not, as yet, been computed and a function that will compute the value if it is needed. In a
production-quality Poligon system one could optimize this implementation significantly,
but for our purposes an AList was adequate.

When a user made a reference to a definition, the compiler converted it into an access func-
tion on the context object that would compute or unpack the value as appropriate. For ex-
ample,

Definitions four a 2 + 2

When : four = 4

would expand during compilation into something of the form

When : (eql (get-value-from-definition :four
the current-context_)4) - _

where _the current context_ is the name given to the context object that is visible
during the evaluation of the When part of the rule. The function get-value-from-
def init ion would extract the required value or would compute the value with a function
that the compiler generated to represent the expression 2 + 2.

We quickly found that we had to represent multiple values in definitions, so we used a
slightly modified implementation to unpack multiple-valued expressions into their compo-
nent values.

This implementation was somewhat naYve because it again assumed the existence of an ef-
ficient, blackboard machine that would implement this sort of behavior effectively. We
discovered, however, that the performance of our applications was being limited by the use
of these definition items. The cost of extracting an already computed value from a defini-
tion was too high. We could have taken two approaches to address this problem. First,
we could have worked to optimize the implementation of definitions, or, second, we could
have used a better compiler. Because of the convenience aszoiated with the existing im-
plementation of contexts and their definitions, we decided to try the latter approach.

Our problem derived from code fragments such as the following:

Definitions

two = 2
all-wheels a the-aircraft(wheels

When : the-aircraft-is-airborne and
all-wheels-length = two + two

In this case example the expression two t two makes multiple references to the same
definition. From the semantics of definitions we know that each reference to the name two
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will always have the same value. We cannot, however, extract all the definitions in the
When-part expression and evaluate them all first because of the short-circuit semantics of
operators like And or because of conditional expressions. Not taking notice of these would
destroy the lazy semantics of definitions. The compiler was made sensitive to these con-
cers and transformed the previous expression into something like the following:

When :
(and (get-slot-value the-aircraft :is-airborne)

(multiple-value-bind ( two all-wheels )
(get-multiple-values-from-definitions

the current context :two :all-wheels)
(eql (length _all-wheels-)

(+ _two_ _two_))))

Here, all of the required definition values for any given lexical level - working outward
from deep lexical levels until a non-strict operator or condition is reached -get extracted as a
block, and the values are seen in local variables introduced by the compiler. This made a
substantial improvement in the performance of user code.

The performance of a system such as Poligon is significantly restricted by the copying of
the definitions template into the context objects from the rules to be executed. The defini-
tion template is represented as a list of lists, so it is implemented as a copy-tree in
Poligon. To be sure, this is a suboptimal implementation. A better alternative would be a
positional representation of definitions. This would allow the template to be represented as
an array, and the initial copying of that template could be a simple block transfer operation.
A positional implementation of definitions can easily be made because all the definitions are
known at compile-time. The extra effort in reimplementing from the inadequate, original
design prevented us from trying it in Poligon.

4.9. Search

Search.

Experience with existing serial blackboard systems such as AGE and MXA caused us to
believe that real-world blackboard systems are likely to spend a significant amount of time
and effort performing searches over the blackboard. The reason is that these systems fre-
quently need to be able to correlate new pieces of data with the existing solution. For in-
stance, if new blips come into the system from radar detectors, being able to associate these
with the aircraft that caused them is important. Making that match often involves searching
all the aircraft.
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A serial search through the blackboard is usually a linear time process at best. Being able
to perform the search in parallel should allow this in principle to happen in constant time,
ignoring the overheads and problems associated with parallel processing. We decided,
therefore, to support this sort of search operation at the Poligon language level and imple-
ment it in as efficient a manner as possible.

Search is implemented in two forms in Poligon that could be efficiently implemented, in a
real-world system. 1 Searches over blackboards usually consist of matching a value against
a slot in a node. Failing this, they consist of matching some arbitrary condition for a given
node. In the first case we were able to encapsulate this request for a match in a simple
message to all the nodes being searched. The message contained the value to be compared
to, the name of the slot to be compared with, and the operator to be used in the comparison.
The second, more general implementation required that a closure be formed over the things
to be compared and that the closure be evaluated by each of the potentially matching nodes.
This is clearly less efficient than the first case but can still be encoded respectably.

Once we had developed a mechanism for deciding which nodes match, we had only to de-
termine which nodes to search and how to process the replies from the search messages.
Poligon, because it is implemented on a machine that supports multicast messages, is able
to send the message for the search to a large number of nodes efficiently in one multicast
message. Poligon allows the user to search over either a collection of nodes or all the
nodes in a class. If the user want to search over a class then the context performing the
search sends a message to the class node, which then forwards the search request by multi-
cast to all of the nodes in question.

When the nodes being searched reply to the search request, they all must send messages
back to the context that initiated the search. It is not possible for only the matching nodes
to reply, because the context performing the search will never know whether it has all of
the replies. The context object must therefore have a means of handling all these replies,
many of which may simply say "not me." Poligon uses bags to implement this behavior.
These are described in Section 4.10.1.

4.10. Data Types

Poligon supports some data types not commonly found in other systems: bags, futures and
multiple-values objects. In this section we discuss the implementation of these data types,
the reasons for their existence, and their benefits, if any.

1This is entirely unlike the search mechanism in MXA, which constructed tuples of nodes that matched a
certain condition. It was the assumption behind MXA that search would be the overriding cost in the
execution of the s)stem, and therefore its model of parallelism required that the blackboard should reside in
an associative memor) so that these sets of tuples could be constructed efficiently. Unfortunately, no
concurrent implementation of MXA was eer made, though the initial candidate for it was an associative
database machine.
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4.10.1. Bags

Eagar thinks that bags are useful.

Poligon uses bags to handle replies from searches. Bags have the valuable property that
they are unordered collections of values. This means we can process the values in a bag in
any order we want; the ordering does not matter to the program.

When the user performs a search operation such as that specified by the expression

Subset of Aircraft Such that Element • wings = 2

the value returned immediately is a bag that represents the matching values. This bag is
implemented as an object that contains a list of values that have already been determined
and a means of generating the values that have not yet been determined. In this case the
means of determining the other values is a data type called a multifuture. This is a data
structure connected to the stream to which all search replies will be sent. As the user tries
to extract values from a bag, it returns values from the determined elements first, and if this
is empty, it looks on the stream for any new values, only blocking the searcher if there no
values are there. If a value found on the stream is a "not me" reply, this is discarded and
the bag tries again to get a useful value. The result of this design is that the process looking
for the values in the bag will always have access to any new values as soon as they arrive
- it doesn't have to wait for a particular element to be returned - and will block only if no
values are present.

This implementation gives a clean and abstract interface to the searching process and seems
to work very well. Its major deficiencies are that the network can get congested with all the
replies to the messages (see Figure 4-17) and that a regular mechanism for implementing
collection data types is difficult to optimize without specialized hardware or microcode sup-
port.
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4.10.2. Multiple Values

Common Lisp supports the return of multip1 , values from functions. Many implementors
of Common Lisp believe that the purpose oi - hiple values is to avoid CONSing, that is,
to save the programmer from having to CONS up a list that denotes the values to be re-
turned and then expecting the caller to unpack the list that was returned.

Acccrding to another school of thought, the purpose of multiple values in a language is to
express the fact that many functions logically should return more than one value. It is not
aecessarily meaningful to define a new data structure type for each function's returned val-
ues. All the values of a function call are meaningful, however, and there cou!d well be pur-
pose in preserving them. The point here is that in the Common Lisr, case, multiple values
are CONSed onto the stack and are discarded as soon as possible. in the other case - and
Poligon is an example of such a system - multiple values are CONSed into the heap and
are discarded as late as possible, i.e., when they encounter a strict operator.

The existence of persistent multiple values is clearly motivated primarily by linguistic ws-
thetics. Nevertheless, the marginal implementation cost of introducing multiple value ob-
jects was small, given that the system already had to be sensitive to srict operators in order
to support its model of futures. Multiple values were :mplemented simply as named struc-
tures with a --'ot containing the list of values. A production-quality system would presum-
ably have a tiore appropriate implementation. Although somewhat prone to CONSing, th.s
implementation of multiple values seemed to work well, was fairly simple to use, and re-
moved any ambiguity that the transmi: ion of multiple values between processing elements
by the system might have waused. There are enough entry poi-tv from the user's applica-
tion into the underlying Poligon implementation that it would have been difficult to preserve
the semar.ti.s of the native Common Lisp's multiple values implementation when hey were
viewed from a Poligon application.

4.10.3. Futures

Unlike existing implementations of systems with futures on real hardware, as op- z ed to
Poigon's simulated machine, Poligon was unable to have low-level support for its imple-
mentation of futures. A number of ka) s in which the Poligon implementation dealt with
this i3., e have already been mentioned. In this section we discuss the implementation of
futures themselves.

Poligon supports two forms of future. futures and multifutures. Neither are accessible at
the Poligon ldnguage leei, though when data structures are printed out they often appear in
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a formson-wha like U1 2 3 #<Future 4> 5 I<Future Unsatisfied>),
where -<Future 4> is A future that has been satisfied and has the value 4 and
!<Future Unsatisfied> is a future whose value has not been computed yet or
whose -vAve has not yet re2ched the owner of fth future.

Futures in Lamina are not first-class citizens. They are simply specializations of streams
that return only one value. They cannot be trivially passed around between objects on dif-
ferent processors. In Poligon, considerable effort was spent on tying to make the imple-
mentation of futures as seamless as possible. Futures are named structures that point to the
streams that deliver their values. A flag is used to indicate cheaply whether the future has
been satisfied or nOL Streams live on the particular processing elements on which they
were created. As a result, special support has to be provided to allow futures to be passed
around between processors.

When an unsatisfied future is passed to another processing element, a remote address to the
stream of the originating future is passed along with the future. The copied future therefore
has a back pointer to the old stream, but nothing more is done. The future is modified on
the originating site so that the future points to a new stream. This stream is then linked to
the original strean in the future. It is a property of streams in the CARE machine model
that they can be linked, so that values that appear on &ne stream will be forwarded automat-
ically to any streams linked to it. Thus, if the future that was copied to a different site is
ever deftured, it forms a link to the old stream and then waits for any values in the stream
to be passed to iL This is a sort of forwarding pointer implementation using message
passing across the boundaries of processing elements.

Muhifutures implement the bags used in blackboard searching (see Section 4.10.1). They
are much like futures in that they are named structures that point to z,. --. The main dif-
ference being that multifutures generally receive more than one message and futures only
receive one reply. Muhifutures could present a problem to the system in the general case
because they do not know how many values they are expecting. They would therefore not
know when to relinquish the resources they were using and allow themselves to be garbage
collected. In the case of Poligon's use of multifutures, however, the bag that creates the
multifuture always knows how many values it is expecting. When the right number of val-
ues have returned, the bag can drop the muhifuture.

4.11. Optimization

The original implementation, although intended to be highly compilable, was woefully in-
efficient. This was simply because we were more interested in investigating the concurrent
problem-solving process than in making hard measurements of the resulting system's per-
formance. Eventually, however, we had to try to improve the performance of the system in
order to get reasonable results from our experiments. These experiments are documented
in some-detail in [Nii 88a' and [Rice 88b]. In this section we discuss some of the opti-
mizations we introduced in order to improve Poligon's performance. We developed many
of these optimizations to provide efficient support for special cases of generic operations.
C-,nsequently, many would not have been necessary if Poligon had not provided as general
and abstract a model to the user.
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4.11.1. Collections

NK-

Collection.

Poligon supports a number of different collection data types, for instance lists, bags, and
sets. Because the original implementation of Poligon assumed the existence of specialized
hardware to deal with the data types that we wanted to introduce, to implementing a power-
ful set of generic operations for all collection data types seemed like a good idea. Bags are
implemented as Flavors instances, as are sets, lists are just lists. We noticed significant
performance degradation in applications from the use of the generic operations that Poligon
supports in order to manipulate tese data structures. For instance, foo -head will extract
?n element from a bag or the first element from a list. The need to perform numerous
typecases on everything meant thaL the application was unable to take advantage of the
efficient, microcoded support for list operations. Likewise, because the Poligon system
kn- ' little about types, the compiler tended to introduce far more defuturing coercion op-
erators than was strictly necessary. As a result, for almost every argument to every func-
tion a Poligon system coercion function was called. This introduced a significant perfor-
mance penalty.

To alleviate these problems, we implemented considerable support for the declaration, in-
ference, and propagation of types into the compiler. Because the subset of the language in
which most of a Poligon program is written is side-effect free, we were able to take advan-
tage of the fact that the type of the value associated with any given identifier does not
change within the scope of that identifier. This means that the compiler was able to propa-
gate inferred and deciared types much more effectively)

As an example of this, consider the following expression:

'It should be notc that thi. ha unly po.,JUe because -he had access to ,he Lisp compiler's source code,
since Common Lisp did not specify .ny uer a.,.essible intzrfa.e to the definiuon of compiler aptimizations
or to ty e intormaton. Wc tfzcrcfhrc uoulJ like to express our grautude to Texas Instrumiens Corp. for its
excellent souice-cole distribution policy.
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Let result -arguent-tail In
Mm=-Over-A-Col-ection(f'+, result, 2)

EndLet

In the original Poligon implemcntation this would have compiled into the following Lisp
code.

(let ((result (tail (t argument))))
(ma-over-a-collection J I+ (I result) 2))

In the above code the function T is the defuturing operator. The map-over-a-co!lec-
t ion function maps its first argument over the collection denoted by its second argument
As each element is extracted from the collection, it will be put through the T operator in
order to apply the + function to iL In the end, a collection that is the same shape as the
original collection will be returned. The value of the result identifier will be a collection
of the same type as that denoted by argument, only missing an element

After the inclusion of the type-checking code we were able to do the following:

Has-Type (argument, list, number)0
Let result -argument-tail
In Map-Over-A-Collection (f +, result, 2)
EndLet

Here the type declaration declares that argument is a list of integers. Knowing that the
ta il function is being applied to a list allows ihe compiler to deduce that result must
also be a list of numbers. Knowing that result is a list of numbers allows the compiler
to open code the mapping operation. Similarly, the compiler knows that each element of
the list over which it is mapping is a number, so it knows that it will not have to apply any
defuturing coercions to the elements of the list during the evaluation of the code. This gen-
erates the following lisp code.

(let ((result (rest argument)))
(loop for .element. in result

collect (+ .element. 2)))

Such code will compile into just a few instructions rather than a large and complex set of
function calls. The speed improvement in such cases is easily of the order of 20x.

One problem we observed was that the use of such extensive compiler optimization made
code harder to debug. Because of the way the compiler open codes Poligon's collection-
processing functions, a few lines of source code can often expand into tens of lines of Lisp
code, a complication when one lands in the debugger. To address this problem we made
the compiler optimizers in Poligon sensiti,,e to the Optimize switches in the underlying
Lisp system. If the program is compiled for low speed and high safety, then the user gets
everything from run-time type checking of named structure accesses and Lisp-level source
code debugging. If the code is compiled for high speed and low safety, then run-time type
checks are compiled out, structure accesses compile into arefs, and collection-processing
opera, ons get open coded whenever possible. This use of the Optimize switches proved
worthwhile and was used for all Poligon's optimizations.
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Clearly, the code shown above is no better than what would have been achieved had the
user written everything by hand- Yet, this approach seems useful in practice because the
user often does not know which data structures will or will not contain futures or the like,
being able to mrke only occasional assertions about the implementation types of various
expressions. This approach seem u- decouple the user effectively from the implementation
of his data structures and still allows improvements in perfonnr',ce by the addition of type
declarations, which do not affect the semantics of the program. This means that optimiza-
tions can be achieved without having to rewrite any code.

4.11.2. Equality

Equaliy.

Poligon needs to have its own idea of equality: it must be able to compare data structures
that may have been copied from arbitrary places and get the right answer. Similarly it
needs to accommodate special handling for the comparison of futures. It is very undesir-
able to block on the comparison of futures unless it is strictly necessary. Poligon also
needs to have some reasonable behavior to allow the comparison of multiple value objects.

It is for these reasons that the generic Poligon equality-testing operator is very complex and
considerably more expensive than the microcoded equality-testing predicates supported on
the native machine. The Poligon system was wasting a significant amount of time in
making expensive comparisons, so the equality-testing predicate was an early target for
compile.r optimization. In most cases the use of type declarations and type inference al-
lowed us to compile uses of the = operator into calls to the microcoded eq and eql opera-
tions. Because of this, the examples of generated code in this paper show, references to
the = operator as being compiled into calls to the appropriate Lisp predicate.

4.11.3. Slot Reads

Just as t)pe declarations are used to optimize the manipulation of collection data structures,
so they are also used to optimize accesses to slots. Poligon originally had a slot read im-
plementation that sent far too many nessagcs. A message was sent to the node asking for
the slots to be read, each of these would rest. Lt in more messages being sent to extract e,,.
of the slots inoled and then still more me.sages to get the required values from the slots
themselves. This need not be necessary, especially if you know that you are executing
code in the process associated with the node, which is always the case for the slot evalua-
tion functions mentioned in Section 4.4.3.
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Our approach was to use the type declaration mechanism both to declare the types of the
nodes being manipulated, and to declare our knowledge that a given function was to be ex-
ecuted directly by a node. We were, therefore, able to write code such as the following:

Define some-function (argl, node)
Has-Type(argi, list, number)O
Has-Tvpe (node, airclaft)O

node-wings-length = argl
EndDefine

Now because we know where this code is to be executed, we can compile it into something
like the following:'

(defun some-function (argl, node)
(declare (self-flavor aircraft_))
(eqi (first (send wings :values)) argi))

Here the message : values is being sent to the slot object denoted by the slot name
wings to extract the values associated with it. Such code would not be necessary in a pro-
duction-quality system that did not implement its slots as objects being pointed to from its
nodes.

4.11.4. Block Compilation

Block compilation is one aspect of program compilation and optimization that Lisp imple-
mentations generally avoid. We did not want to be limited in this way but clearly had to ac-
cept that we had no reasonable way of block compiling our Lisp code. We knew, how-
ever, that we had the option of block compiling our knowledge base. We found that a sig-
nificant amount of time was being spent in knowledge search, and this encouraged us to
investigate the block compilation of our knowledge base.

In a system such as OPS [Forgy 76], most of the system's time is spent in performing a
search over the knowledge base for applicable rules. Blackboard systems, by the very na-
ture of the way in which they are decomposed, have had a substantial amount of knowl-
edge search hand-compiled out. The preconditions on knowledge sources allow the rapid
filtering of knowledge and the selection of knowledge sources that are interested in particu-
lar classes of events. This same sort of hand compilation applies to Poligon because the
user associates rules with particular slots in certain classes of nodes. But, when a slot is
updated in Poligon, the system must still search the (admittedly small) list of associated
rules to see whether any rules are interested in the update. This search is not computa-
tionally trivial but can be performed at compile-time. Thus, if block compilation is al-
lowed, the search is not necessary.

IThe actual implementation would be more complex than this, but the example shows essentially what
happens.
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Block Compilation.

Rules are not associated with the majority of slots in a normal Poligon program. Likewise,
most slots that do in fact have associated rules have only a small number, and this number
does not change during the execution of the program.1 Thus, in most cases, it is possible
to determine at compile-tim all the rules that are interested in all slots. This requires block
compilation, since there are always forward references in real code. After the entire knowl-
edge base has been loaded, it is possible to recompile the system so that all slot updates to
slots that have no associated rules are open coded in a vey simple manner. Slot updates to
slots with associated rules are open coded in a manner that wires them directly to the rele-
van rule objects, thus totally eliminating knowledge search.

This strategy has its costs, however. Once a Poligon program has been block compiled, it
is not possible to add or remove a rule without completely recompiling the application.
Clearly this is sort of operation would only be performed once an application was well de-
bugged, but it is a small price to pay for improved performance. Moreover, this strategy
conforms to Poligon's philosophy, which is to trade extra compilation time for improved
run-time performance.

4.12. Signal Data Input

On trapping a lion in a desert [Petard 38]: The Cauchy, or Functiontheoretical,method. We consider an analytic lion-valued function f(z). Le be the cage.

Consider the integral

where C is the boundary of the desert; its value is f( ), i.e., a lion in the cage.2

Because Poligon is a .."stem that at least attempts to perform real-time operations, we

needed a simple mechanismn for introducing data into the system. We of course lacked ac-

Expe.tations are an exception to this rule.

2/NB. by Picard's Theorem [Osgood 28], we can catch every lion with at most one exception.
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tual real-time monitoring equipment, but we wanted to get as reasonable an implementation
as possible.

All signal data in Poligon gets into the system from one (Lisp) stream. The data in that
stream is timestanped and coded so that the application can find out when the event that it
denotes was supposed to have happened and what sort of event it actually represents. This
stream is read by the class node of a class of input handlers. The timestamp of the node is
read and the node sends a message to itself, which is timed so that the node will wake up to
process the signal data at the appropriate simulated domain time. When the class node
wakes itself up to deal with the signal data, it allocates to itself an instance of the class that
it represents to handle the input from a resource kept in one of its slots. It then sends a
message to an instance of itself that tells it to process the input. When an input handler has
finished its processing, it sends back a message to the class node on a private stream telling
the class node that the input handler is free and can be put back in the resource. If there are
not enough instances in the resource to handle the signal data at any time the class node
creates new instances and sends them initialization messages that tell them to process the
input. In practice, we found that the number of input-handler nodes created was generally
the same as the number of signal records read in a given timeslice.

Once the input data arrives at the input-handler server node, a user-defined procedure is in-
voked in order to process the input. This procedure would typically instantiate a node to
represent the input that it had received.

In retrospect, we can see that this implementation had a number of deficiencies. First of
all, for linguistic reasons, the only thing these input handlers could really do is create
nodes; the user could not update an existing node, for instance. It was effectively always
necessary to represent the new data as a node before the system could do anything about it.
This is a deficiency because it tends to create a large number of nodes that are not necessar-
ily useful to the representation of the application. In addition, if the programmer wishes to
view the process of data arriving in the system as a message-passing process, Poligon will
not allow this model.

Signal data input.
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The second major deficiency of this design is not so much structural as one of execution. It
seems worthwhile to create new input handler nodes to deal with new signal data if their re-
source is empty; but if the system gets heavily congested for whatever reason, the input
handler creation process can run away, creating masses of server nodes. In a sense this is
an artificial state of affairs, because if the program cannot keep up reasonably well with the
real world something is wrong with the program. It is, after all, supposed to be a real-time
program. Nevertheless, some limit to the number of input handlers is likely to be needed in
order to stop the act of loading data into the system from overwhelming the system. How
to compute this limit is a problem we have not addressed. In most of our experiments we
were intentionally running the system in a manner that would not overload it excessively.
This meant that the system's performance was not adversely affected by input-handling ac-
tivities. It seems likely, in the absence of any analytic model for Poligon's behavior under
such conditions, we would have to perform extensive experimentation in order to find
heuristics that would allow us to limit the number of input handlers effectively. This is
clearly not a trivial problem since the value would certainly vary with different numbers of
processors and varying system load.

4.13. Problem Areas

Early work with Poligon yielded the implementation of considerable functionality, whose
ultimate utility was unknown. This is not entirely surprising, given the experimental nature
of the project. As Poligon developed, some aspects of the system's behavior gained signif-
icant importance; others had to be modified in order to make them useful. Some aspects of
the system remained unused and were eventually removed, either because these facilities
were never used in our applications and software rot set in or because the initial, naive im-
plementation was not reasonable in the context of later implementations and our developing
understanding-of the issues involved. This section concentrates on the aspects of Poligon
that did not work as planned.

4.13.1. Property Inheritance and Links

To the read
of the will

Property inheritance.

A number of existing systems support property inheritance and/or some sort of link mech-
anism. AGE had a somewhat primitive link mechanism. BBl supports links along which
property inheritance can occur. Many systems also support a limited set of system-defined
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relationships. For instance, KEE" I supports the instance-of and the subclass-of relation-
ships, as do AGE and BB 1, though to a somewhat lesser extent. In developing Poligon,
we knew that these relationships would come for free from the implementation. They did
not seem sufficient, however, particularly because they do not allow the representation of
the part-of relationship. Any system like Poligon has a problem with the efficient imple-
mentation of relationships. A fixed number of relationships can easily be wired into the
system, but any user-defined relationships are likely to be harder to implement and less ef-
ficient.

The initial implementation of Poligon came with the instance-of, part-of, and subclass-of
relationships built in, and we suspected that we needed something more than this. The ini-
tial implementation allowed the inheritance of properties along the part-of relationship.
Thus, if the program attempted to read a slot on a node that was not present there, the node
of which the node in question was a part would be asked for that slot, and so forth up the
hierarchy. As this approach appeared insufficient, we proceeded to implement a fairly gen-
eralized link mechanism along which property inheritance could also occur. Links were
represented as nodes themselves, for reasons of regularity, and system-defined slots on
each node would contain a list of these links encapsulated within structures that specified
the names of the links. System functions allowed the user to find the nodes linked to a
given node by a given relationship.

The links were implemented in such a way that, as property inheritance occurred along a
link, a system-defined slot would be triggered so that the user could add rules that were
sensitive to the act of property inheritance. This implementation appeared regular, but was
very expensive. It also had a number of other deficiencies.

" The implementation of user-defined links was not the same as that of system-de-
fined relationships, so the same mechanisms could not be used to manipulate these
different links in a reasonable way.

" Deciding on the semantics of property inheritance, although the algorithm for it was
well defined, caused considerable problems. Because we did not k.,ow what be-
havior was appropriate for this sort of inheritance, the implemented behavior was
probably not sensible.

" The inheritance algorithm specified that inheritance would be sought first up the
part-of links and, failing that, along any user-defined links. The part-of relation-
ship in Poligon is under user control, though reasonable default actions occur in
setting up this relationship. This means that a node can be directly part-of more
than one node. It also means that the set of nodes to be searched for inheritance can
be circular and that a considerable amount of effort must be expended to avoid be-
ing caught in circularities.

" The implementation of inheritance is incompatible with slot access optimization.
Unless the user is constrained to state the class of object to be inherited from, slot
accesses cannot be optimized.

" With Poligon's current model of stack-group use, the behavior of this inheritance
scheme is not implementable in the general case. This is because if a node is asked
for a slot that it does not have, it will have to block and ask for the value from else-

1KEE is a trademark of Intellicorp.
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where. Since blocking is not allowed by Poligon nodes, this design cannot be
used. 1

In practice, we found that the property inheritance features were not used even when they
worked. This was probably due to a number of factors: the applications appeared not to
need it, the abstractions for property inheritance were probably not right, and the inappro-
priate semantics probably caused users to lose confidence in getting the desired behavior.

4.13.2. Deletion

The deletion of blackboard nodes seems to be a problem that no blackboard system has
really tackled. There is an incompatibility between wanting to have a system that knows all
about itself and garbage collection. As a result, the deletion of solution-space elements is
usually left to the user. Unfortunately, user-defined deletion and resourcing in a concurrent
system is an extremely difficult problem. Conventional models for the deletion of objects
rely implicitly on being able to determine that either there are no outstanding references to a
node or, more commonly, although there are still outstanding references to a node, none of
them will ever be used again. In principle such a state of affairs allows the programmer to
recycle nodes, but in Poligon this is not necessarily the case. Although the user may think
that no more references are going to be made to a node, it is not possible to determine
whether there are any nodes still outstanding for that node backed up somewhere in the
network. The node might still receive messages that in some way assume it is still the same
node even after it has been recycled.

Poligon implemented two forms of deletion for the user: discarding and recycling.
Discarding switched off the node so that no more rules would fire on it but left it able to
process any outstanding slot read or write messages. Recycling would completely reinitial-
ize the node and add it to a free list of nodes on the class. The self-stream of the recycled
node was replaced with a new one, and the old self-stream was redirected to a site manager
object, so that any outstanding messages sent to such a node would be handled in some
way - usually by signaling an error.

lOne can envisage a different design in which the node that does not have the slot returns a future to the
value of the slot that it doesn't ha~e and sends a message to the node to inherit from, telling that node to
reply to the forwarding stream of the future. This works to some extent but prevents the defined semantics
of Poligon's slot operations from operating. A multiple slot read or write, for instance, is defined to be
atomic. We hac no satisfactory way of s)nchronizing the two nodes in order to get reasonable behavior so
the implementation fails.
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Deletion.

Although this implementation worked and is still present in Poligon, it was not, in fact,
particularly useful for a number of reasons:

In order for a node to be recyclable, it was necessary to be sure that the reference
count to the node was zero. Generally this was possible only if there was just one
rule that could fire on the node and if the node would fire that node only once. For
this to occur, the node generally had to be at the bottom of the blackboard, created
as a result of signal data input.

As was discussed in Section 4.12, it is not obvious that nodes should be created to
represent signal data in the first place. But if they are, the optimized, unmanaged
form of node creation should generally be used. Otherwise, large amounts of sig-
nal data typically cause the class nodes for the classes created by the signal input
procedure to become very hot while servicing all the creation messages. Because
the creation of these nodes is usually not managed, it does not have access to the
free list of nodes and cannot take advantage of the recycled nodes.

" Discarding nodes generally didn't seem to be useful. It is possible to envisage an
application in which the ability to switch nodes off would be useful, but in our ap-
plications this did not prove to be the case.

On balance, resource management of blackboard nodes in Poligon is not handled in a use-
ful manner. This is an extremely difficult problem, and possibly the only way to solve it
would be to rely on the underlying system's garbage collector.1

1Garbage collection, incidentally, is a major area that the Advanced Architectures Project has not
investigated. We know it to be a difficult problem. Poligon's use of the CARE model improves matters
for garbage collection in some ways, since the only objects that are ever transmitted across a processor
boundary are remote addresses or copied data structures with no pointers back to the originating address
space. Thus, a garbage collector can always collect any data types other than remote addresses locally. The
garbage collection of remote-addresses, however, still remains a major problem. By means of a reference
couting model, it seems possible that one could use the CARE processor's communications processor to
maintain reference counts as it transmitted remote addresses, but we have not investigated this.
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4.13.3. Messages and Events

Messages were eliminated explicitly from the Poligon language. We did not see any par-
ticular use for them since they were an artifact of the implementation, and not part of the
blackboard metaphor we were trying to represent. This may well have been an error.

Poligon supports a type of action part in rules called cause events. The cause events mech-
anism triggers any rules associated with a slot without actually changing any values in that
slot. This mechanism was implemented so that the user could trigger rules without having
to perform fake updates to slots, which might have caused errors.1

In practice, the cause events mechanism was used as a sort of semaphoring idiom and slot
updates were often thought of as messages. Consequently, the programmer had to use
Poligon's rule mechanism in order to fake messages and methods. It is possible that the
programmers were not thinking in a manner appropriate to the blackboard metaphor, but ii
is equally likely that the Poligon language lacked generality and flexibility in this regard. If
we were to try this again we would certainly attempt to find a better abstract model for the
integration of message passing, rule invocation and process management.

4.13.4. Load Balancing

On the Advanced Architectures Project, load balancing was originally intended to be man-
aged by a layer of software implemented at a lower level of abstraction than the problem-
solving system level. Because of the scale of the project, this issue was not tackled until
recently and the work on load balancing did not reach any state of maturity until after all of
the experiments with Poligon were over. Thus, all the work on Poligon was based on the
assumption that a layer of system software that did not exist would exist at some future
time.

Our experiments showed that load balance is not a trivial issue. We had originally assumed
that we could buy back any performance loss from poor load balance by using more pro-
cessors and thereby lose only efficiency. This proved not to be the case as was shown ad-
mirably in the Lamina Elint experiments [Delagi 88b] and also by the Parable experiments
[Bandini 89]. The loss in performance from load imbalance proved not only to be substan-
tial but also unrecoverable. Thus, even though we assumed that Silicon would be cheap at
the beginning of the project, we found that this was not enough.

By design, Poligon did not provide any mears for the user to know on which processors a
program might be running. It was reasoned that, because of the large number of proces-
sors, the problem of load distribution would be sufficiently complex that the machine
should be able to out-perform the user.

lPoligon also supports a means b) Ahi,.h the programmer can explicitly state that the rules associated with
a particular slot are not to be triggered as the result of a specific update.
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Load Balancing.

In practice, we found that the user probably should have been given some control over load
distribution. For example, the ability to declare that certain classes were likely to create a
lot of busy nodes, or that certain class nodes were likely to be very busy.

Ideally, this would be tackled by the environment in some way. It is not difficult to envis-
age a system that watches the load behavior of a Poligon program and then learns some
useful load-distribution heuristics. User declaration of this type would be a second best.
Yet, even this model would probably not be sufficient in a fielded system because the
problem-solving behavior of the system is so predominantly data dependent. Different be-
havior in the system will cause wildly differing load characteristics, and so the system
would probably need some dynamic load balancing and/or object migration mechanism.

4.13.5. Closures

Closures are one aspect of Poligon that proved to be unnecessarily expensive. This was
due to bugs in both the Symbolics and the TI implementations of Common Lisp closures
that occurred in the compiling of complex forms such as Poligon application source files.
These problems were sufficiently severe that in order to continue with our work we had lit-
tle choice but to implement our own form of closures. This was not too hard to do because
of the semantics of the Poligon language and the existence of the compiler, but the resulting
closures, which were implemented as objects, were far less efficient than a native imple-
mentation would have been. Systems like Poligon create a large number of closures. An
efficient and bug-free implementation of these is crucial to efficient programming.

4.13.6. Pipelines

Our early work on Poligon lacked of understanding of the mechanisms by which paral-
lelism is achieved. As a result, we substantially underestimated the importance of pipeline
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pa-allelism. In Poigon, pipefines are formed implicitly as dat migrases up the abstraction
hicrarchy, and this nuy not be te most efliciem use esoaces. Since the ojects in the
sysem cOnmismn case ith one another by sutams a prpanmnig model that ecowages
the use of non-ephemoal pipelines may be beier. This wuld help to comnsaie for the
co of strean crextion. Lmnina [DeLai 86J isjust such a modeL How one
could integraie sch a p cMing modl dwi l botd metphor is not at all clema,
hmev.r. This may be an area in which de underlying system could set up streams be-
tween objects and manage them without the uses program having to know about iL We
were unable to finvsti.a this area.

4.13.7. Implications for CLOS

Te Poligon system was developed using the Flavos object-oiented system before the de.,
velopment of the Common Lisp Object System (CLOS). Although we wer generally
dedicated to the use of portable standards on the Advanced Architectures Project, we were
unable to use them both because they did not exist at the time and also because thy would
still have been insufficient to give us the leveLof environmental integration that we sought
in Poligon. But, independent of these problems of standardization, there is a more funda-
mental problem with the new CLOS standard that may not be obvious to the casual reader,
but which is likely to be of signLfican-e as people start to develop new concurrent problem-
solving systems using the evolving standards. CLOS is unselfish, that is the concept of
self has no particular significance in CLOS, unlike Flavors. The behavior of methods is
considered to be more closely associated with geneic ftctions than with objects. This has
the benefit of giving a regular view of the world and allows multimethods, methods that are
specialized on more than one argument.

There is, however, an additional problem with this unifying model; it assumes a shared ad-
dress space. It is much harder to implement multimethods when the different objects that
are being referenced within a method might well be residing in different address spaces on
different processors. The implementors of distributed-memory machines tend to think in
terms of message passing as the model for communication between both processors and
user code. To try to overlay a generic function model of object orientedness on top of this
is not a simple matter. We have not had to address this issue because of the immaturity of
CLOS, but others in the future will have to think long and hard before they implement a
concurrent, object-oriented problem-solving system using CLOS. Certainly, simplifying
assumptions can be made. For instance, one could restrict the program only to specialize
methods on one argument or only to invoke multimethods on objects that are on the same
processing element. Yet each of these simply seems to lead to further complications or loss
of generality.
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5. Debugging Poligon Programs

Oebtg.

Our original motivation in producing Poligon was not just to build a concurrent blr kboard
-, but rathe r to build a conc-urrent blackboard system developrinr totz!_ !efore

Poligon was started, a considerable amount of effort had already becit expended on the
CAOS project [Brown 86] and [Schoen 86]. What we originally assmed would require
only a couple of months ended up taking over a year and a half. This was partially due to
the immaturity of the CARE simulator, but the difficulty of programming concurrent sys-
tems was certainly a major factor. Just as early computer developers would have been hard
pressed to envisage a window-based debugging and inspection tool, our fist attempts at
building concurrent problem-solving systems required investigation in largely unexplored
areas. This is especially the case as this work has come before any significant body of ex-
pertise has evolved in the debugging of concurrent programs, let alone symbolic programs
or problem-solving systems. This section discusses some of the lessons that we learned
during the implementation of Poligon and, more importantly, during implementation of
applications in Poligon. There are no great pearls of wisdom, but we hope that we can
convey which of the features proved useful and which did not.

5.1. Simulation

Our first major observation was that simulation is hard and very time cusm.u ing but it is
still easier than using real machines. This is due to the flexibility afforded '.. a simulator,1
which allows the user to modify the topology, size, and behavior of the mac: I .s on which
programs are to be run, and also to the inadequacy of the programming en: I "nments on
existing parallel machines. Ha, ing poor development environmen:s is not at -J surprising
given the comparative youth of these machines, but it was entirely a sufficic,, reason for
not using them in our experiments. The fact that the tools that have been dc iloped for
multiprocessors tend to be designed for the debugging of C and FORTRA'. )rograms
means that these tools are of little or no use to Lisp programmers.

Because it is much easier to observe the internal behavior of a system in a simulat,, than on
a real machine, we believe that simulation is likely to be an important aspect of pgram-

IThc CARE simulator is particularly good in this respect.
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ruing concwment systems in the fume. A good example of this is what happens wlen fte
prgram dumps you in th debugger.

On a real parall mchine this presents significant problems- For instance, there is
no way of imediately stopping Al the proessors. Even if the processor that finds
the error broadcasts a halt message to the rest of the machine, a considerable
amount of extra pr essing might have happened before the machine comes to rest
This can only confuse things.

The techno.ogy for running debuggers in multiple stack groups on uniprocessors is
well developed. This is not necessarily the case with parallel machines. It is much
harder to get reasonable behavior out of inspector-like tools that must give a repre-
sentation of data at random points in the machine. To chase data structures, the in-
spector will have to make references to remote processors, which could be a prob-
lem since it requires a suitable protocol for remote data structure manipulation, even
on a distributed memory machine.

0 Monitoring message traffic or memory operations on a multiprocessor, although not
technologically hard, is hard in practice. This is because it often requires special
hardware modification and also because the results delivered from this monitoring
is at the wrong level of abstraction for anyone other than the implementors of mem-
ory systems or of communications networks. On a uniprocessor running a simula-
tor, monitoring at the appropriate level of abstraction is simple.

* Finaliy, it should be noted that a crucial aspect of a simulator is that you can modify
the simulator itself. Redesigning and then building hardware is a time consuming
process. If one can modify a simulator in order to give more debugging informa-
tion then this, itself, justifies the use of simulation.

5.2. Low-Cost Emulation

An important aspect of Poligon is that it has an emulation mode, Oligon. In this emulation
mode, the accuracy and instrumentation of the CARE simulator are given up in favor of an
emulation that gives a reasonable facsimile of Poligons semantics when it is running under
CARE, and it does so without a great deal of the cost.

Oligon runs entirely within one stack group. A considerable amount of effort in CARE's
simulation is spent in switching stack groups. Oligon does not have to do this because of
the way it implements its futures. Oligon's futures look just like Poligon's futures to a
Poligon program. Indeed, the user does not even have to recompile a program in order to
switch between Oligon and Poligon modes. Internally, however, an Oligon future encap-
sulates a message that will deliver the value of the future when its method is invoked eval-
uated.

When an Oligon future is created, it is recorded in a queue of unsatisfied futures. When the
user defutures a future by executing a strict operator, the message that will evaluate the fu-
ture is sent and the future is side-effected with the value of that evaluation.

The serial mode has a simple scheduler that, when it has nothing better to do, executes the
messages associated with futures. Thus, all the messages associated with each future are
evaluated at some time, which in turn guarantees that the all slot updates and node creation
operations will, in fact, happen. This is necessary because futures are used to implement
the equivalent Poligon behavior for all interprocess messages in Oligon. The rate at which
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fuures arc forced bv the scheduler is under the user's control, so that the user, to some
exent, can emulate different levels of sysrte load.

When a rule .'templs to fire, instead of a new process being spun off for the context, a
record that points to the context to be invoked is kept in the scheduler queue with all of the
arguments that it would have been sent had it been operating in parallel. The scheduler
loops around, removing events from this queue. The queue is implemented-as a doubly
linked list. This allows the user to tell the scheduler to operate in a number of different
ways, selecting events to execute in a LIFO, FIFO, or random manner. The use of these
different scheduling modes again allows the user to emulate Poligon running in its parallel
mode under differing load conditions. The variations in the order in which the rules are in
fact executed is sufficiently stressful to the application that once bugs have been eliminated
in this emulated mode by means of different scheduler settings, the application will likely
run in the Poligon mode without major incident. The sorts of events that are collected in
this scheduler queue include the If pans, Action pans and Otherwise parts of rules.

5.3. Trace and Breakpoints

On trapping a lion in a desert [Petard 38]: The Weiner Tauberian method. We pro-
cure a tame lion, Lo of class L(-o, -), whose Fourier transform nowhere vanishes,
and release it in the desert. Lo then converges to our cage. By Wiener's General
Tauberian Theorem, fleiner 33a] any other lion, L(say), will then converge to the
same cage. Alternatively, we can approximate arbitrarily closely to L by translating
Lo about the desert [Weiner 33b]

In the absence of any formal model for the debugging of concurrent blackboard systems,
we found it necessary to include debug prints in our code. Although we have not gone
much farther than this, we took the step forward that serial systems have made (and per-
haps taken this to its logical conclusion) by developing facilities for tracing and break-
points. It should be noted, however, that although these facilities are optimized for Poligon
and the blackboard model, none of them in any way directly address the debugging prob-
lems of concurrent systems per se.

Breakpoint.
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The native Lisp machines on which Poligon runs provide a nurniler of trace and breakpoint
-. cilities. These are not adequate for our purposes, not because they do not work (they do)
but rather because their behavior is at the wrong level of abstraction. The Poligon compiler
transforms the user's program into so many different functions and methods that putting
trace or breakpoints on these is unlikely to be simple or worthwhile for the user. What the
Poligon programmer would prefer is debugging facilities that are closely coupled both to
the programming model of the system, and to the common mechanisms by which users in-
troduce errors into heir code.

A major problem with tracing activities in a real-time system is that any debugging code is
likely to affect the behavior of the program itself. Indeed, it was our experience using
MXA that leaving debugging code in is often simpler than trying to debug the real-time be-
havior of a program once the debugging code has been taken out. To this effect, Poligon
tries hard to make its debugging facilities noninvasive. Whenever a trace or breakpoint is
entered, the simulated real-time clock is stopped - another benefit of simulation - and
started again on exit. Although the cost of executing the code that handles trace and break-
points is not trivial, the perturbation caused by this code is far smaller than what would
have been experienced if it were not possible to stop the clock during the actual processing
of the trace. Formatting trace output is so expensive compared to the short evaluations in
Poligon, which are typically less than a millisecond, that one cannot afford to count ue cost
of output of simulations.

Our attemp t to provide more focused debugging was a four-pronged attack, first on the
knowledge base and then on the blackboard, on general Poligon system activities, and fi-
nally on monitoring the program's parallel execution. It should be noted that at any point
where a trace point can be applied in Poligon, a breakpoint can generally also be set where
this is meaningful.

5.3.1. Debugging Rules

Poligon's rules are split up into a number of different components: the When, If, Select,
Action, Otherwi .- , and Timeout parts. The evaluation of the rules takes place in the con-
text of the set of -efinitions that have been evaluated up to the relevant point in the execu-
tion of the rules. Rules are grouped together in knowledge sources. Even though these are
compiled out, in the sense that knowledge sources have no significance in the semantics of
the program as it operates, it is still likely that the user will want to view all the rules in a
knowledge source together. With a view to these issues we implemented a number of de-
bugging features that are mentioned below and shown in Figure 5-1.

• Any trace or breakpoint operation that can be applied to a rule can also be applied to
a knowledge source. This has the effect of applying that operation to all the rules in
that knowledge source.

* All of the critical points in a rule are traceable. Thus, trace points can be set on the
When, If, Select, Action, Otherwise, and Timeout parts of rules.

" Traces can be set so that the currently evaluated values of definitions are printed out
at any point in a rule. This allows the user to monitor the behavior of a rule in
terms of the definitions and when they are evaluated.

" Rule failure can be traced. It is a common feature of blackboard systems, and rule-
based systems in general, that the use, often does not know why a given rule fails
to fire. The converse is often not the case because it is usually possible to set a
breakpoint in a rule for when it does fire and one can then find out why it fired.
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Because the user often does not know why a rule failed to fire, we implemented a
facility in Poligon allowing the user to set traces on rules that are activated when a
particular condition fails to pass. To do this the Poligon compiler takes advantage
of the fact that the conditions of rules are usually the conjunction of a number of
clauses. The compiler separates out these clauses, and at run time they are executed
in the appropriate sequence, checking the trace settings as appropriate. If one of the
clauses fails, it can execute the required trace. It is thus possible for the user to set
a trace that says Stop if this rule fails tofire because a clause fails after clause four
in the Ifpart.

Knowledge Source : Spot Threats
Rule Report Threatening Emitters
Knowledge Source : Process Activities

Set flags for all rules in Process Redirected Observations
Trace When part: ............................. On Ott
Trace When part failure on ciause: NIL
Trace If part: ................................ On off
Trace If part failure on clause: .... NIL
Trace Select part: ......................... On off
Trace Then part: ............................ On Off
Trace Else part: ................................ On Off
Trace Timeout part: ....................... On Oft
Break When part: ................................ On Off
Break When part failure on clause: NIL
Break If part: ................................... On Off
Break If part failure on clause: -- NIL
Break Select part: ............................ On Off
Break Then part: ............................ On off
Break Else part: ................................ On off
Break Timeout part: ........................... On Oft
Print Definitions: ............................ Never When It Then Else Tyneout
Abort [REN]F EZI Do it [49>] FZI

Fig. 5-1. A menu showing the trace and break options available for rules and
knowledge sources. In this example a knowledge source has been selected; any trace or
breakpoints selected will apply to all rules in that knowledge source.

As is generally the case, these sort of trace features take a certain amount of computation to
perform. This is incompatible with the goal of a high-performance system, so these traces
are compiled out at high Optimize speed settings, a sacrifice of debugging ease for speed.

5.3.2. Debugging Using Nodes

A number of tracing features have been included within nodes. These in many ways mirror
the behavior mentioned earlier for rules and knowledge sources. They are mentioned be-
low and shown in Figures 5-2 and 5-3.

" It is possible to set traces on the reading, writing, or causing of an event on a slot.

" Just as it is possible to set traces for all rules in a knowledge source, it is possible to
set a trace that will apply to all instances of a class, or simply to one particular node.
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;tt e-16edes!

tt -Seen.
tea

I.fs.t!L Tac nbea t F- I

Fig. 5-. Trace and break options "available for operations on Poligon nodes. In
this case the class Emitter has been selected. A similar menu allows all instances of a
class to have these options set. Through this menu the user can set trace and breakpoints
on system-defined slots, such as Number-Of-Subsystems, and on user-defined slots, such
as Emitters-Seen.

._ Hyperclass : All Classes
Mfetaclass : Meta Class
Class Classes
Mfetaclass ieta Root
Class Root
Node Poligon Blackboard
eietaclass Meta General Class Fields

Class General Class Fields
Metaclass : Meta No Observations
Class No Observations
Metaclass : Meta Observation Manager

Set Trace and Break flags for node :- Enitter
Trace Discard : 

On Off

Trace Recycle : On Off
Break Discard : On Off
Break Recycle : On Off
Abort [1_M>]0 Do it [<M> [
SMetaclass : Meta Cluster

Fig. 5-3. A menu showing that it is possible to trace or break on the act of dis-
carding or recycling a rule.

5.3.3. Tracing System Activities

Technical progress has merely provided us with more efficient means of going
backwards.

- Aldous Huxley.

In addition to the trace and breakpoint features just mentioned, a number of trace features
allow the user to monitor system functions. It is often the case that the user wants the sys-
tem to progress to a certain point and then stop. This can be done because Poligon allows
breakpoints to be set on the signal records that are read in, on the ticking of the clock, and
on the creation of nodes. These are shown in Figure 5-4.
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Please-set these s sten paraneters and user variables.
Trace Messages: .............................................. Vabose Yes Yes-No Std C5 No

-Trace Clock Ticks: ......................................... Yes No
Trace Signal Records ..................................... Yes No
Break on Clock Ticks. ................................. Yes No
Break on Signal Records: ........................... Yes Ne
Trace Rules: .................................................... Yerbose Bdel
Trace Node Creation: ..................................... Yes Me
Trace essage Puntinr .................................. Yes No
Break on Message Punting ............................. Yes No

Fig. 5-4. A menu showing that it is possible to trace or break on the act of dis-

carding or recycling a rule.

5.3.4. Monitoring the Parallel Execution of a Poligon Program

A number of additional trace features allow the user to optimize and debug Poligon pro-
rams:

* To allow the user to spot and rectify undesirable context punting, traces can be set.

* To allow the user to detect excessively slow pieces of code, the user's code is timed
in the Oligon mode and a trace message can be emitted for any code fragment that
requires more than a certain time to execute.

" To allow the user to detect slow code in the full, parallel case, Poligon allows the
user to trace messages, by recording the messages and the arguments. It times the
execution of the messages and allows the user to record only those taking a signifi-
cant amount of time.

" To allow th,. user to get detailed information about the behavior of a program,
Poligon is interfaced to the native machine's metering package. This allows the
detailed metering of user code. Because the metering package can record only a
short period of computation, the metering interface allows the user to specify a time
to wait before metering commences. This allows the program to progress until it is
actually running, as opposed to executing initialization code.

5.4. Perspectives

Finally, we would like to make an observation from our work on Poligon that has general
applicability. A Poligon application is instantiated in a large number of data structures that
owe their implementation primarily to the search for efficiency, not to intelligibility. It is
often the case, therefore, that the programmer's cognitive model of the system may well be
entirely different from the implementation model. Consequently, it is crucial to have tools
that allow the user to view data structures in a manner that is consistent with the program-
ming model, rather than the implementation model, if rapid debugging is to be possible.
There are two simple examples of this in Poligon:

Contexts have a lot of structure that is used by the system to implement their behav-
ior. For implementation reasons, however, it was difficult to see the values of the
definitions that are encapsulated within a context. Fortunately, we had developed
an inspector tool that allowed data structures to be viewed simply from different
viewpoints. It was therefore simple to define the default behavior for inspecting a
context to display it as a mapping from the names of definitions to their values (see
Figures 5-5 and 5-6). Another perspective allows the user to view contexts in
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terms of their implementation rather than their purpose. Similarly, Poligon nodes
are viewed by default in a manner that hides all system details, making it easier for
the-user to see what the program is really doing (see Figures 5-7 and 5-8). Being
able to switch between multiple representations of the same data structure - and,
of course, being able to implement these v'iews easily - has proved to be of con-
siderable utility.

tP<Coftxt 41IAs's.Agi Or Create FMwA?1>

elinlUens
TED: T

IS-IN-CACHE: MIL
TIOIIS-IN-TIMESLICE: (0 3 8)

-lITIER: NiFuture x(Future xt~emot0 Emitter lIId=3>3))
-EITTER-CACHE: HIL

~ ElTTER-iD: 3
THE-OSERUflTIOtI-LOB: 91

T-OUSERUATiOtI-flODE: NIL
* OSERVAITIO-SITE: (:BiG.ERR C9 67))
~ OSERVATI ON-TIME: 0

-SERVATION-TYPE: :RI-9

uftiple DefInitions
SROCESS-OBSERURT IONS+RSS ION-OR-CREATE-EliI TTERDEF I NITI OAiS+THE-EII ITTER+CRERTEO: aeAjet

R~ES-OBSERURT I ONS.ASS I GN-OR-CRERTE-E I TTER.OEFI N IT I OS+TE-OBSERAT I ON-TYPE+THE-OSER

Fig. S-S. The default perspective for viewing contexts treats them as a means of
mapping names into values.

tcCoffeXt 41fASS4717 rC-eite EX'nAMer
;object of flavor P: :CONTEXT. Function Is '(EQ-ASH-TABLE (Funcal lable) 50232376),

11ER: 4
'::TIES-USED:I

MUI)ER-OF-T I tES-SCHEDULEO: 0
DU I MIN-S ITE: M:i

1::LRST-UALUES: NIL

ARE-USER: :LOCALE: NIL
ARE-USER: :SELF-): *"Remote Context 411 Assign Or Create Emlitte,

-USER: :PEDIN-: unbound
ARE-USER: :PENDING-TASK: NIL
::DEFINITIONIS: ( (:POCESS-OBSERURTIONS+RSSIGN-OR-CREATE-EMITTER4OEFINITIOS+T.E-1
::RULE: 8(Atssign Or Create Emitter)
::NODE: *(Remote Observation 0

:SLOT: PU: :REDIRECTED-FLRO
:UALUE: (MNIlI'

::TRIGGERINO-iOOE: N"Remote Observation 4)
::EXPECTRT ION-ARGS: NIL
:TiEt4-PRRT: (PU: :PROCESS-OBSERURT I ONS+RSS ION-OR-CREATE-EN I TTER+SELECT4CASE 0)
:.CRSE-PART: 2
: OTHERIISE-PAkT.: NIL

:.TIMEOUT-PART: NIL
::INIRECT-TO: NIL
::TAG: :IIEWNODE-CREATED

::CHECKED-TAG: 2
ALL-ACT I Ot-PARTS: 2

:RULE-SHOULO-BE-ACTIUATED. T

Fi1g. 5-6. An alternate perspective for viewing contexts allows them to be seen in
terms of their imnplementation.

In a naYve environment Poligon's implcmentation makes navigating over the net-
work of Poligon objects very difficult. This is because Poligon's nodes are viewed
as remote addresses. These remote addresses point to streams, which in turn point
to processes. Somewhere in the context of these processes is some pointer to the
actual object that is primarily associated with the process. A large numn'ber of mouse
clicks in an inspector would therefore be required to get from the remote address of
a node to the node that ic really points to. Again, fortunately, we had developed
tools that allowed us to decouple the printed representation of our data structures
from their mouse-sensitive values. Thus, a remote address to a node might be
printed as #<Remnote Aircraf t-42>. The name Aircraf t-42, however,
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would be mouse-sensitive, and when clicked on, would deliver the node we were
interested in. The machine is left to do all the haroj work of figuring out what the
user wanted to see, a huge saving of effort.

4 EMI TTER-IODES: (Empty)
EM ITTERiS-SEENI: (Empty)

Fig. S-7. The default perspective for inspecting Poligon nodes causes only user
slots to be visible.

tr<Exiffelj
4)n object of flavor PU::META-EHITTER. Function is s(EQ-H-TFIBLE (Funcalldile) 4606702),

>::RSSOCIRTED-RULES: NIL
: 1NSTANCES: (Empty)
:;NLNBER-0V-INSTftICES: (0)

2::tRNlQUE4kRSER: 0
::INSTfIVCES-FREE-LIST: NIL
:DISCRED-NOES: NIL
:CLASS-TO-CRERTE: PU: :EHITTER

:INSTANCE-OF: (#(Future *(Future *<Reote Mata Emitter)>))
:TRRCE-A-BREAK-FLRGS : x(Node-tra3ce-and-break-f logs>
::REACE-AO-BRK-FLR0S-FOR- INSTANCES:, u(Node-trace-and-break-f Iagse)
:SLOT-TRACE-AND-BRERK-FLEIGS: NIL
:SLOT-TRRCE-AHD-BRERK-FLAOGS-FOR- I NSTRNiCES: NIL

:LINK(S: (Empty)
:IS-R-L I W: (Nil)

::RGENT-STACJK-GROUP: :HD-STACK-GROUP
CRE-USER: :LOCALE: NIL

CARE-USER: :SELF=>: *(Remote Emitter)
RE-USER: :PENIDIIIG: unbound

ARE-USER: :PEI9DING-TASC: NIL
':CLOCK: (1

'::PENDINO-TIlIEOUTS: NIL
: :RULES-WATCH ING-t.E: NIL

'::EXPECTATIONS-lMiE; NIL
:SUPERSYsSTENS: (*(Remote Pol igon Blackboard))
:SUBSYSTEM1S: (Empty)
::SVI1BOLIC-NAI1E: (Emitter)

HAW: ("Em l t ter")
:HUMBER-OF-SUBSYSTEIIS: (0)
:NUMB6ER-OF-SUPERSVSTEnS: (I)

U: :ENITTER-HOOES: (Empty)
U: EMITrERS-SEEN: (Empty)

F ig. S-8. An alternate perspective for viewing Poligon nodes allows the pro-
grammer to see the entire system-defined structure of nodes.

5.5. Compiler Optimization

A significant factor in our ability to develop and debug Poligon programs seems to have
been the controlled introduction of compiler optimization during debugging. The Poligon
programmer has available a number of debugging aids that are progressively switched off
as the user asks the compiler for higher levels of optimization. This seems to have been a
good decision. The sorts of transformations that are applied to programs, even in conven-
tional, serial systems, can be somewhat counterintuitive and confusing in the process of
debugging a program. Clearly, these optimizations should not affect the semantics of a
correct program, so they are only of significance in the presence of program bugs. A num-
ber of the optimizat:ons that the Poligon systemn uses have been discussed above in the re-
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lated sections. Our intention here is to reiterate our belief in the importance of this design

strategy.

6. Conclusions

There is altogether no lack in Genesis of retribution for failure to obey the Lord. It
would not seem, however, that the examples made had much effect. We are thus
driven to the conclusion that the direct incentive is more effective than the disincen-
tive, the carrot more useful than the stick. A possible explanation of thisfact might
be based on the theory that the wrong donkey is beaten every time.

- C. Northcote Parkinson, Incentives and Penalties.

In this paper we have attempted to detail the design and implementation of Poligon, a con-
current problem-solving system modeled closely on the blackboard metaphor.

A number of papers concerning Poligon have focused on its architecture, motivations for
its design, its performance, and experiments performed on Poligon applications. None of
these publications have indicated how we implemented it or the obstacles encountered and
the mistakes we made along the way. This paper described the implementation in sufficient
detail that the reader should be able, given enough effort, to implement a system with simi-
lar, or better behavior and performance.

We concentrated on Poligon's design as an example of an attempt to develop a high per-
formance, concurrent problem-solving system. We have delineated a set of issues that im-
plementors must address in order to achieve good performance in a concurrent blackboard
system. Many of these observations are applicable to other architectures and to serial sys-
tems as well. The important aspects are node creation, knowledge search, conflict resolu-
tion, knowledge invocation, context evaluation, slot reads, slot updates, event posting, and
the efficient handling of stack groups and processes. Each of these aspects of a system's
performance were discussed with particular reference to the Poligon model.

A number of features in Poligon proved to be inadequate, difficult, or didn't work at all.
Among these were run-time property inheritance, node deletion and reuse, message passing
in a rule-based system, the efficient use of pipelines, and load balancing. We also found
ourselves unable to shield the user from the differing costs of communicating with local
versus remote memory.

We have found that the blackboard model, an appealing cognitive model for concurrent
problem solving, does not necessarily work as well in practice as intuition might lead one
to expect. As a consequence, although we hoped to deliver many orders of magnitude of
speedup due to parallelism, we have only been able to show about one order of magnitude
and there are indications that this might scale to about two orders of magnitude. When
comparing our application against the same application written in AGE, however, we ob-
serve that the application's simulated performance in Poligon was about fifteen thousand
times faster. At least by comparison, therefore, we can assert that we have, indeed, built a
high-performance concurrent blackboard tool.
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In countries with an aristocratic tradition (like Britain) the highest status is associ-
ated with official position, birth, education, athletic prowess and gallantry in battle.
In countries without any such tradition (like U.S.A.) the-highest status is associated
with the biggest capital and income. Very seldom do we meet a millionaire with a
V.C., and Sir Thomas More's achievement, in being both knighted and canonized,
is likely to remain an unbeaten record.

C. Northcote Parkinson, Incentives and Penalties.
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AIDE

Abstract

AIDE is an environment thaz provides facilities for the hierarchical specification and simulation of systems.

In addition, a user of AIDE can distribute a simulation over a network of computers. Achievable

concurrency in a distributed simulation depends on the functional characteristics of the system being

simulated and on the ability of the simulator to exploit its knowledge of these. AIDE can use the

information contained in the structural and behavioral specification of a system to increase concurrehcy

and decrease synchronization costs during distributed simulation. Performance analyses of the ADE

distributed simulation algorithm for a simulated multiprocessor architecture indicate that (1) the

disparity between communication costs and event-processing costs and (2) load imbalance can

significantly limit speedup when concurrency is available. The distributed aspects of the AIDE

environment are implemented through an extension of the underlying object-oriented programming
system (FLAVORS) to multiple machines.

1. Introduction
A design system is expected to provide a framework for a designer to adequately implement

representations of certain interesting physical or abstract entities that perform some function. In doing
so, it must provide a suitably precise formalism and an integrated set of tools, thus allowing the designer

to conveniently specify, modify and evaluate such representations 12, 121. AIDE' is an attempt to provide

such a framework.

AIDE evolved in the context of the Advanced Architectures for Expert Systems project of the Heuristic

Programming Project. One of the goals of this project is to specify a concurrent, distributed-memory

computer architecture that will speed up Al programs through parallel processing. AWE grew from the

need to implement and evaluate this architecture, called CARE '41, flexibly and efficiently. As the

evaluation was to be done by simulating the execution of large application programs (for example, CAOS,
PuLIGON, and ELINT), this led to investigating the utility of distributed simulation both as a means of

reducing simulation turnaround time and in ensuring that the simulated machine was being programmed

fairly, that is, without making use of the real shared memory available on the host machine.

This document describes the essential aspects of AIDE. The first part of the document concerns design

representation and capture. We briefly describe the facilities that AIDE provides for the hierarchical

specification of systems. The second part of the report deals with the functional verification and

performance evaluation of system specifications through simulation. We concentrate on describing what

has been the major portion of this work, namely, the investigation of distributed simulation. The

appendix discusses the extensions to the underlying programming system that form the basis for the

distributed system features of AIDE. More detailed documentation for the system is contained in the

user's manual 101.

2. Design Capture
Design capture denotes the process by which a designer specifies a representation of an abstract entity

(that may be physically realizable) to a design system. The design system must provide a representation

formalism that is sufficiently general and expressive to describe a wide variety of such entities. It must

also allow the designer to conveniently use this formalism. In this section, we discuss the representation

formalism used in AIDE, and describe the facilities it provides for design (apture.

1AMn Is& Distributed Environment.
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2.1. Design Representation
Every real-world or abstract entity may be thought of in terms of its structure and its behavior. A

structural view of an entity is any organizational view of the entity that decomposes it into (functionally

or otherwise) semi-independent components. A behavioral view of an entity is a conceptual formalization

of the way certain interesting properties of the entity change over time. Of course, structural and

behavioral formalizations of an entity complement each other in attempting to define the modelled entity.

Different formulations of structure and behavior emphasize different qualities of the entity. The

representation of an abstract entity in terms of particular aspects of its structure and behavior constitutes

a design or model in AIDE; the system provides a formalism that allows the user to describe such x design

(entity) by describing its structure and its behavior.

Design is a creative and incremental activity; designs evolve over time in the designer's mind. For
example, it is well-known that the process of design is "partially-structured" [21 in that designers often

work both top-down and bottom-up. A design system must provide a representational vocabulary that

recognizes this and a capture mechanism that makes such an approach to design convenient.

AIDE follows PALLADIO (2] and HELIOS [51 in using an encapsulation of structure and behavior called a

component as the fundamental unit of design. It allows the user to combine and refine components in

well-defined ways during design capture. A design (description) a. any instant in time is exactly such a

collection of related components.

2.1.1. Hierarchical Partitioning

Hierarchical decomposition is one of the ways in which a designer works top-down to make the process of

designing a complex system more tractable. PALLADIO viewed the process of circuit design as the

incremental refinement of a functional description of the circuit into its physical realization. Here the

basic design refinement step was partitioning the circuit at some abstract structural level into constituent

components specified at either the same level or a less abstract level.

AIDE supports hierarchical partitioning directly and simply by allowing the user to define a component to

be the composition of arbitrary (perhaps incompletely specified) subcomponents.

2.1.2. Design Libraries

Complementing hierarchical partitioning is the use of prototypes to build on previous work [5, 21. This

allows the designer to rapidly create new designs by modifying existing designs or by applying new

composition rules to them. AIDE supports this idea through the use of libraries, which are collections of

prototypical components that the may be stored between sessions and copied or re-used in the creation of

new components.

2.1.3. Behavior
Component behavior specifications must be efficient both in expression and during simulation. AIDE uses

the ZETALISP [13) language and programming environment directly in addressing both these concerns.

paying the penalty of expecting the user to be a reasonably competent LISP programmer. AIDE defines the

behavior of a component that is being modelled as the composition of other components to be the

composition of the behaviors of the individual subcomponents.

2.1.4. Implementation

It is natural to use the object-oriented programming paradigm to implement the components that

represent a design, directly mapping from entities in some "'real" world (of the designer's choosing) to the

data objects manipulated by the design system. AIDE uses the object-oriented programming facilities

provided by the FLAVOR system ?131. Every component is implemented as an instance of some

4-300



Design Capture AIDE

component clas, where the class defines a component type and is internally implemented as a flavor.2

From this point on, we intentionally blur the distinction between the representation of a design and the

system's implementation of that representation. We hope that this approach will assist in the description

of the design system by providing implicit operational definitions of the various abstract terms (like
"structure" and "component") used by the representational formalism.

2.2. Structure
As was stated above, a design in AIDE consists of a specification of its intended structure and behavior. In

this section, we discuss the structural aspects of such a design description in more detail. This discussion
is in terms of the unit of a design description, namely, the component.

To the design system, a component's structure consists of two parts

* the component's own properties, and,

" the component's relationships with other components.

2.2.1. Component Properties •
The designer sees a component as a "black box" of a particular type that has a collection of local named
attributes with associated values. The allowable attributes of a component are defined by its type, while

the values on these attributes may (and usually do) differ for each component instance. A subset of these

properties 3, the state properties, ,re used to generate the behavior of the component. Special state

properties known as ports (input and output) constitute a component's interface to its enviionment.
Other properties are used by AIDE to maintain and display components. 4

AIDE provides the def component form for a designer to define the structural properties of a new

component type. It has a graphical editor to capture and alter the display properties held by

components.
5

Figure 2-1 is a simple example of the component class declaration for an abstracted D-type flip-flop.

Each instance of d-flip-flop has three input ports (named d, clock, and clear), one output port

(named q), and no internal state.

(dIrcomponent D-Flip-Flop
(:input D Clock Clear)
(:output Q)
(:docuaentatioa 'Class of positive-edge-triggered D-type

flip-flop vith direct clear. Uses *hig . 'low and 'x
logc signals. Has unit delay between an input transition
end stable output.'))

Figure 2-1: Definition of the d-f lip-f lop Component Class

2Within the usual inheritance network.

3 We use the term "properties" loosely to mean the collection of attributes and their values.

4These are automatically inherited by every component class.

5A large part of the graphical interface was modelled after that used by HELIOS and PALLADIO.
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For a complete description of the def component form see [10; suffice it to say here that it translates

into the appropriate FLAVORS declarations, resulting in the definition of a new component class being
present in the environment. Thereafter, components of this class or type may be created by the usual
instantiation mechanism.

2.2.2. Structural Relationships
The second part of the structural description of a component is a description of its relationships with
other components. There are two structural reiationships that may hold between components :

* Composition. Any component may be a subcomponent of exactly one component and every

component may be composed of any number of subcomponents. When a component is
composite (made up of subcomponents), it may share its ports, for behavioral purposes, with
those of its subparts through the "connection" relation.

" Connection. This relation holds between individual ports of two components and is
specified by lines which connect the relevant ports. Lines may connect an output port of
some component to an input port of another component except when connecting ports between
a composite component and one of its subcomponents, in which case the connected ports are of
the same type (port sharing). Usually a line connects just two ports; contacts are special
entities that provide fan-in and fan-out capabilities for lines.

These structural relationships between individual components are captured by AIDE through its graphical
structure editor.

2.2.3. Prototypes
Traditionally, object (frame) systems have had difficulty in implementing a general mechanism for
capturing complex relationships that must hold between sets of instances of various classes. The
"connection" structural relation is one such relation. It is difficult to declare this information in the class
definition of a composite component, although it is convenient to visualize the component as a group of
connected subcomponents. For example, a processing site in the CARE architectural model consists of an
evaluator, an operator, and a number of fifo-buffers, net-inputs and net-outputs. Though
these are all connected in a well-defined manner, it is extremely tedious to specify this information in the
defcomponent declaration for a site.

The solution we have adopted in AIDE is to store connectivity information about a composite component
type as a "canonical" instance of the relevant component class. This canonical instance is called the
prototype of its class and it is created using the design editor, it may then be stored in a design library.
The structure of a component class is fully specified by the existence (in the environment) of both a
def component declaration and a prototype.

2.2.4. The Design Editor
A component in AIDE may be accessed through the graphics-based, menu-driven interface which provides
operations for viewing and selecting components. Top-level components or devices are maintained in
book-keeping entities or worlds, each of which may have several windows or viewports viewing the
relevant device. The design editor uses the graphics-based interface in providing operations to create new
devices and edit their structure. Menu-driven commands allow the user to create, alter and delete
components, lines, ports and contacts (see Figure 2-2). There are also facilities to copy devices into
permanent file storage, "prototize" devices for inclusion in libraries (see Section 2.2.3), and load devices
and libraries from file. A complete desciption of the operations provided by the editor may be found ,n

(101.
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The behavior of a component is the interaction of the component with its environment over (z- tracted)

time. A behavioral specification in AIDE. applies to a class of component. It defines the interaction
between a component of that class with a behavioral .simulator to generate the requisite behavior over
time. Since the simulator in A2E is event-driven, this interaction takes the form of the consumption and
production of events, which are encapsulations of the state chan e in the simulated system. A

behavioral specification for a component is therefore simply a specification that relates changes in the
values of input ports with changes in the values of output ports over (simulated) time. Components
whose output values depend on a history of input values make use of their internal state properties.

AIDE provides the defbehav.or form to capture the behavioral specification of a component class. A
bebavioral specification is implemented by a method on the component class. All the state properties of a
component are accessible to this behavioral method.

During the execution of a simulation, events pertaining to a component are consumed or processed when
the simulator propagates the encapsulated state change and then invokes the relevant component's
behavior method with the event as a parameter. Within a behavior method invocation, the simulator
may be informed of new events through a call to the assert function to specify a change that will be
true of some state of the component at some future simulated time. This results in new events being
produced or generated.
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2.3.1. An Example
Figure 2-3 is an abstract behavioral specification for the d-f lip-f lop component class. The signal on

the d input is transferred to the q output when the clock input goes from low to high. If, however, the

clear input goes low, then so does the q output. The q output is unaffected by the d input whenever

the clock is stable. The clock period is two simulated time units, and input setup time is ignored.

(defbohavior D-Flip-Flop (component state signal soy)
The above 4 parameters "destructure" the event.

Clear Clock D I Q
------------------- I ------
low X X I low

high 1T high I high
high t low I low
high low x I QO

(selectq state The state attribute changed by this event.
(Clock Clock Just changed.
(When (eq (state-value (port-signal Clear)) 'high) Clear is high.

(when (eq signal high) ; Clock is rising.
(when (< (- now (state-tie (port-signal D))) D changed in

2) ; this clock cycle.
(Assert Q (state-value (port-signal 0)) Transfer D to

(1+ now)))))) ; Q after unit delay.
(Clear Clear Just changed...
(when (eq signal -low) . . . went low.
(Assert Q *low (it now)))))) ; Q goes low after unit delay.

Figure 2-3: Behavior Declaration for the d-f lip-f lop Class

There are some points worth noting in the example of Figure 2-3.

* The style illustrates one of the benefits of event-driven simulation : only the state changes are
propagated as opposed to recomputing the state of the entire system at every step f111.

s The declaration has an explicit notion of the passage of time. Simulated time units have user-
defined semantics. It is up to the user to ensure that the units are used consistently by
different connected components.

* The state changes specified by the events for a given simulated time are all made before
behavior methods are invoked on the events.6 Hence, there is no need to specify a clause to
handle a change in d occurring at the same simulated time as a clock transition from low to
high, where the clock event is "processed" earlier in real time than the d event.

2.3.2. Composite Behavior
The benefits to be gained by hierarchical simulation are well-known. Once the behavior of a multi-
component system is verified, the designer may reduce simulation turnaround time by abstracting this
behavior into a less detailed behavior (specification) that realizes the same function. Conversely. a
designer may want to do detailed simulation of a component after doing an initial high-level simulation of
its functionality in order to determine parameters and trade-offs at the next lower structural level.

AIDE directly supports hierarchical simulation by allowing a designer to specify whether a composite

6This excludes zero-delay events generated by the behavior methods. The special cae of zero-delay events on the local state of 3

'omponent is allowed by A.. A behavioral specification that uses this feature must handle such state changes actually occurrirg

at the time the zero-delay event is generated.
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component's behavior is its own defined behavior (top-levl) or the compounded behaviors of its connected

subcomponents (internal). For example, if we designed a shift-register from D-type flip-flops, we might

initially verify the design using the internal behavior of the shift-register, that is, the composite behavior

of its flip-flops. Later, when using a shiftregister in the design of a control-unit, we might use a top-level

characterization of its functionality for efficiency. Thereafter, when modelling the control-unit as realized

in silicon, we may revert to the internal (flip-flop) behavioral perspective of the shift-register.

How does composite behavior work? During simulation, events on output ports are immediately

transformed into events on the furthest participating connected input ports (if any).7 These are then

forwarded by the terminal port to the simulator to be consumed by the terminal component at the
specified simulated time.8 Hence, the effects of a local change propagate through the system along
connection paths, achieving the required overall system behavior.

2.3.3. Behavior Requirements
To ensure that a composite system's behavior is predictable from that of its parts, a top-level behavioral
specification is usually required to satisfy the following properties [3, 61 :

1. Functional Output. Events generated on output ports of a component depend only on
events consumed on its input ports and internal states, and on its initial state. This implies
that a component's top-level behavior should only depend on those aspects of its environment
that are visible as changes on its input ports.

2. Realizability. An event generated for simulated time t cannot be affected by events
consumed by the component for simulated times greater than t. This simply reflects the
notion that no real system can predict the future.

3. Positive Delay. An event on an input port or internal state with simulated time t can only
generate events on output ports with simulated time greater than t. This captures the idea
that no real system can alter the past.

Note that this excludes zero-delay events between components. However, we allow zero-delay
events on the internal states of components, as long as there is a finite delay before such
events result in output events.

A quick inspection of Figure 2-3 should verify that the behavior specified for d-f lip-f lop satisfies these
properties.

7Consider the device just before the e.e.t,on of a simulation. The structural hierarchy of components and subcomponents forms

a tree tooted at the device. This tree can be Clattened into a 'participation digraph" as follows. The set of nodes of this digraph *s

generated by doing a breadth-first traversal of the Lree during which any encountered component that is using top-level behavior ,s

added to the node set and the subtree rooted at this component not traversed thereafter The arcs of the digraph are then formed

by following the outward onnecting lines from &,I output ports of such participating components until an input port on some

participating component is reached. Sich input ports are the furthest participating connected input ports or targets of Lher

respective participating output ports.

gEvent transformation is done cooperatively by the ports themselves thro.jh message-pa.ssing. Ports are implemented as

,favor-instances. Output ports can cache their target input ports since structure s static for a simulation. The uesort macro

resuits in a message being sent to the output port to ,nform the simulator of the new event. The output port simply forwards this

message to its cached target, which carries out the actual interaction with the simulator.
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3. Design Validation
Once a design has been specified to a design system, the designer must be able to validate it by ensuring

that it meets both its functional and performance goals. In the absence of formal verification methods,
simulation is a common technique to establish the functionality of a design [11, 71. Furthermore. since

simulation, unlike emulation, automatically carries with it an explicit notion of timeg it can also be used
to empare the performance of a design with other designs or real systems that realize the same
function.10 The performance evaluation of a design is often as important to the designer as verifying its
functionality [3, 71.

In this section we look at discrete event simulation in AIDE. After a brief discussion of sequential
simulation, we define the distributed simulation problem and present the approach used in AIDE to solve
this problem. Finally, we present some experimental results on the performance of the AIDE distributed
simulation scheme for a simulated multiprocessor architecture based on CARE.

3.1. Discrete Event Simulation
While there are various types of simulation (see 81 for a good characterization of simulation methods), we
are concerned here only with discrete-time, event-driven simulation. Our choice of event-driven
simulation is based on the fact that most designs exhibit very few state changes at any given time;
furthermore, such state changes are widely scattered in time, especially in "mixed-mode" simulations.
Hence it is more efficient to keep track of the changes and their times rather than recompute all states at
every instant in time. Before proceeding with our discussion, it is useful to consider some definitions.

3.1.1. Consistency and Acceptability
A.n event is an atomic state change in the simulated system during the execution of a simulation. It may
be represented as a record consisting of (1) a component, (2) the port or internal state of the component
that changes, (3) the value that it gets, and (4) the simulated time of this change. Two such events are
equivalent if they represent the same state change to the simulated system, though for different executions
of the simulation.

Simulated time is the designer's abstraction of real time. The state of the real system (device) at any
real time corresponds to the state of the simulated system (device) at the corresponding simulated
time j8J. Simulated time takes on non-negative, discrete, and, for convenience, integer values.

The simulation of a component (device) refers to the execution of a simulation of a component (device)
under the control of some simulation algorithm which regulates the consumption (and hence, production)
of events relevant to that component (device) over real time. For a given simulation there is an
associated set of events. We say that two simulations are equivalent if they produce equivalent event sets
(given that the device being simulated is deterministic). Two simulation algorithms are consistent if any
two simulations under the control of each algorithm, respectively, are equivalent. The actions of a
simulator to achieve consist#,ncy (using a simulation algorithm) are collectively called synchronization,
hence the algorithm is often called a synchronization algorithm.

Lastly, we call a synchronization algorithm acceptable if it is consistent with itself and if it accurately
reflects the behavioral specification of the simulated system. Intuitively, this means that a

synchronization algorithm is acceptable if it always generates all and only those events induced by the
initial state of the simulated system (including the initial events) and the behaviors of the components
being simulated.

.As construed by the designer.

10 Aryind et al, in 11, characterize emulation as an abstraction of simulation to which timing detal is compiled away.
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3.1.2. Synchronisation
Acceptability is the goal of every synchronization algorithm. Since almost every implementation of a

simulator (including that of AIDE) depends on side-effects to changeable state l , acceptability

operationally means that the simulation algorithm must control the consumption of events during

execution so that behavior-generating code is invoked in the correct context. (This is not necessarily the

case, for example, a simulation system that uses a strict logic programming system to implement

structural and behavioral specifications need not concern itself with this issue since all "state changes"

will persist in such a system. Of course, the burden of storing and managing this information has now

been thrust upon the logic programming system.) With this implementation model in mind, we provide

below an informal relation on events that will be useful in analyzing the acceptability of synchronization
algorithms.

An event ei preempts another event e if either of the following is true

I. ei and ej specify a change to the same state entity but the simulated time of ei is greater than

the simulated time of ej;

2. the state change specified by ei overwrites information that is used by ei and the behavior of

the relevant component to generate an event.

Two events are independent if neither preempts the other.

We claim that an acceptable simulation algorithm is one that generates an event set such that for every e

-ad ej in the set, if ei preempts ei then ei is consumed after ei .

In theory a simulator has to run the entire simulation to determine the set of preemption relationships on

its event set; in practice, however, it computes a set of possible event preemptions. The requirement is

that this set be a superset of the set of actual event preemptions. The problem of synchronization

(distributed or otherwise) is therefore essentially the problem of dynamically determining potential event

preemptions and processing those events that cannot be preempted.

3.2. Sequential Simulation
We discuss briefly the mechanism by which sequential simulation works in AIDE.

3.2.1. Synchronization Using Simulated Time

The standard sequential synchronization algorithm makes use of the simulated time of an event and the

realizability requirement on component behavior (see Section 2.3.3) to achieve acceptability. Events with

lower simulated times are always processed (consumed) before events with higher simulated times;

therefore, at the time an event is processed, all the events that could possibly have preempted it have

already been consumed.

The main advantage of this synchronization algorithm its simplicity. It is easily implemented on a serial

machine. However, it is too conservative in its computation of possible event preemptions to be viable in

a distributed environment.

11There 1s a direct correspondence between a state variable in the specification and one in the implementation of tht specification.

This is dictated by storage manaement considerations.
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3.2.2. Implementation
AIDE implements a simulator as a flavor instance running in a process that maintains a simulated-time.

ordered eventliet and an associated global clock for a given device. At every execution step the simulator

removes the event at the head of the eventlist, moves the clock to the specified simulated time, makes the

appropriate state change, and invokes the behavior method of the relevant component. Events generated

by %he behavior of a component are passed back to the simulator, which sorts them into the eventlist to

be processed when they get to its head. It is easy to see that this algorithm satisfies the acceptability

criterion we defined in Section 3.1.2.

AIDE uses the graphical interface to allow the designer to access the simulator associated with a device. It
provides operations to reset, initialize, and run a simulation with or without breakpoints [10J.

Current facilities for "observing" a simulation are limited; a general instrumentation interface is under
design.

3.3. Distributed Simulation
The motivation for distributed simulation is doing event processing in parallel using multiple machines to
gain a reduction in the overall simulation turnaround time as compared to a sequential simulation. Thus,
synchronization algorithms for distributed simu!ation systems seek ways of processing non-preemptable
events in parallel. These algorithms must trade tff the cost of determining potential event preemptions
against the cost of processing the events themselves in minimizing the total execution time of the
simulation. Such costs, naturally, depend on various factors, including the target machine environment.
Our discussion below assumes a machine environment that consists of small number of fairly powerful
machines (e.g., Symbolica 3600s) communicating over a shared network (e.g., an ETHERNET).

Though there are various classes of synchronization algorithms for a distributed environment [81, we only
consider those which distribute control of the simulation to the participating machines, that is, algorithms
that are run individually by each machine. Such an approach will avoid creating unnecessary bottlenecks
at some central controller.

3.3.1. Partitioning the Problem
Decomposition is not only a powerful tool in design but also in distributed problem-solving. It is
therefore natural to consider various ways of partitioning the problem of simulation into subproblems
which may be tackled by the participating machines individually. In doing this partitioning we must
keep in mind that we would like each machine to operate as autonomously as possible and also that there
are costs associated with communicating information between machines which we would like to minimize.

Usually the structure of a device (system) directly reflects its functionality. Given the nature of the
design representation, this implies that the subcomponents of the device themselves behave fairly
autonomously. This in turn points to the obvious utility of partitioning the simulation problem by
assigning to each machine the subproblem of simulating some subset of the components of the device
(system). Such a partitioning approach will tend to reduce the gross interactions and shared state
between the machines, thus reducing the costs associated with communicating and keeping consistent such
information. It will also allow each machine to operate reasonably independently. Furthermore, if the
system being modelled itself exhibited concurrent activity (a multiprocessor computer system like C.RE.
for example), then this partitioning scheme may enable the overall simulation of the system o directly
exploit the natural parallelism visible in the events that represented the "actual" concurrency. The above
are, in fact, basic assumptions of the AIDE distributed simulation approach, as they are of most other
distributed simulation schemes .6, 3. 8, 91.
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support for synchronization. Thereafter, the desigmer logicaWl pariin the aainh

participating components; to servers- Upon compilig any relevant, synchroaizatioa information (e
Section 3-4.1), the system physically distributes the components as speciffied in the partition to the

.!vn server machines. This has the effect, that the lines that constitute the conton pas bewee

components on different machines now also run between the relevant, machines-

The execution of a simulation consists of a se- mce of biphase s-imulate-synchronize cycles by the servers.

During the simulate phase of the cycle, a ser procses thos events that (according to the information
it possesses) cannot be preempted by any other pending event in the system After processing these

events, a server enters the synchronize phase of the cycle. Each server communicates (an abstraction of)
the state of the simulation of its local components to the other servers and then awaits receipt of similar

communications. Thereafter, each server interprets these synchronization mesages to determine its next

set of extant non-preemptable local events.

3.3.3. Conditions for Speedup
In the context of this system organization, we can Identify three desirable goals if we are to achieve
speedup.

" Mlaximum concurrency. The greatest possible number of servers should be actively processing
events during the simulate phase of any system cycle.

" Maximum ratio of simulation work to synchronization overhead. The simulation work done
by each server during every system cycle should be maximized with respect to the overhead of

gathering and communicating synchronization information. This is equivalent to saying that
the number of synchronization points should be minimized over the duration of a distributed
simulation.

* Balanced load. The simulation work done by each of the actively simulating servers in any
cycle should be about the same so that the busiest server will not slow down the entire system.

3.3.4. Using the Device Specification in Determining Preemptionis

Synchronization based on the simu.lated times of events alone unnecessarily (and, in most cases, severely;
restricts the amount of exploitable concurrency. Few hierarchical models (e.g., CARE, which mixes
detailed simulation of *nter-procebsor communication with more abstract simulation of intra-processor
computation activities) exhibit much coincidence at the event level. There are very few events at any

given simulated time and so there will be very few opportunities for parallel processing in their

simulation. The problem lies in assuming that an event with simulated time f could be preempted by ai"'

event for simulated time less than t. The functionality of the device being simulated, that is, the dev--

specification, and the behavior requirements (see Section 2.3.3, provide additional information for bet-

estimating potential event preemptions.

4-309



Sizce thePa pr 7tpioe relaniom apolies between events the more information contained within an event is
csed boy the 31nckOciz ii 3algontbm. the dowen its s~nchronization activties comes to using the- results

of t&e s iee 3- d he better its eg=adoo of preemption relationships. We organize the

o ioration that an even, curies in trm of the "'ields" of an event "record".

I. Simsdceed time is emential in- -ynchrociatiofl, as the definition of preemption and the
,pem ataon of a B&Zavor specificatin already suggest. We may make use of the property
tbat two even s with the same simulated ti=e are always independent to find inherent
Pau'dieism

2. The comnptent is also useful within a partitioning scheme like ours that exploits the
structural topology of the device. As a component has a minimum, positive simulated time
day between: consuming an event and generating one on an output port, and since it is

directly connected to only some small subset of the other components, an event for that
component will have a simulated time "lag" before it could preempt an event on a component
more "distant" in termis of connections. This enables a server simulating the latter
component to consume in parallel existing events for it up to "lag" simulated time units
beyond the event for the original component. Connection information is available in the
structural specification of a device and minimum delays may be extracted from component
behavior specifications.

3. The state property being changed within a component is useful when a behaviorally complex
component has a number of internal states that affect its output ports with varying delays.
This gives better bounds for "lag" on a per-event basis within such a component, thereby
giving a better overall approximation of possible preemptions. Such information can be
determined as for the component itself.

Much of the above synchronization information can be efficiently compiled before the actual execution of
a partitioned simulation. However, some of it must still be computed dynamically by the machines,
communicated between them and. finally, used by them. 'Lis results in oterhead costs that could
undermine the speedup gains realized by the increased opportunities for parallelism.

3.4. The AIDE Distributed Simulator
In this section we examine in some detail the synchronization algorithm used by AIDE. The algorithm
reflects a particular choice in the complexity of the synchronization information that is maintained,
communicated and interpreted by the AIDE simulation servers. We conclude with some performance data
for a simulated multiprocessor device and provide an analysis of this data with respect to speedup.

Each simulation server, as mentioned above, is essentially a sequential simulator (operating on a piece of
the deiice) with support for system-wide synchronization. Each server maintains an eventlist and a local
clock whereby local non-preemptable events are processed as in a serial simulator (this is not quite true.
see Section 3 4 1). It is thus convenient to abstract synchronization information into information
regarding the simulated times of possible inter-server preemptive event arrivals and departures. This is

precisely what AIDE does.

3.4.1. Static Synchronization Information
Partitioning in AIDE begins by the user selecting a partitioning level in the hierarchy of components that
constitute the device. Every component at this level is considered to be a logical process or Ip. This
means that, unless the simulator is informed otherwise, simulated time at any point in the execution or
the simulation will be consistent within the lp and all of its subcomponents. However, different Ips may
have different simulated times, even on the same machine.
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Thereafter, the user logically partitions the set of Ips into server blocks. Each block corresponds to a

server (machine) that will simulate its member lps during the execution of the distributed simulation.
This partitioning is currently done interactively via the graphics-based interface.

The synchronization information now compiled is at two levels : the intra-server level and the inter-server
level. In both cases, the information is static during simulation.

At the intra-server level, the following quantities are computed and cached within a component. They
use a required, predeciared, positive minimum event delay that is associated with each top-level
behavioral specification by the designer.

1. The window-in (WI) of a component is the minimum simulated time delay for an event
received on any "border" input port (in the local partition block) to have a consequence on a
port cr state of the component. 12 Components with border input ports, or border consumers,
have WI=O. WI quantifies the equivalence of a topologically "inland" Ip to its "closest"
border consumer Ip in the same partition block, in terms of the propagation delay experienced
by preemptive events arriving at the border lp during simulation. It is computed by simple
path analysis within each block of the partition, in conjunction with minimum component
delays.

During execution, the effective simulated time (EST) of an event is the simulated time of
the event minus the WI of the component concerned. Events at a server are sorted and
consumed in EST order in an effort to reduce synchronization points by increasing the number
of events that can be processed in a given simulation phase. By this technique, local lps can
often possess different simulated times and yet be correctly simulated in the same cycle. This
also enlarges the work to overhead ratio of an execution cycle.

2. The window-out (WO) of a component is the minimum simulated time delay for any event
that is consumed by the component to have a consequence on each "downstream neighbor"
block (of the local block). The WO of a component with border output ports (a border
producer) to the directly downstream neighbor block(s) is the minimum event delay associated
with the component. WO quantifies the potential preemptive impact of an unprocessed event
at a component on each downstream neighbor block of that component's block. We note that
the utility of WO is predicated on the assumption that the device will be partitioned in such a
manner as to cluster connected" components together on a server and that there will be a small
number of downstream neighbor blocks for each block of the partition. We also note that,
unlike WI which is based on an Ip, WO is calculated for each individual participating
component since it does not affect time consistency within an lp. The WO delays are
calculated using path analysis within each block of the partition, along with the minimum
delays on components.

During execution, the WO record of the relevant component is stored with each produced
event. At the beginning of a synchronize phase, the WOs on all extant events are used by a
server to calculate the earliest times any unprocessed local event could affect each of its
downstream neighbor servers. Such neighbor impact times are communicated in a
synchronization message to the other servers. Each recipient server can abstract these
neighbor impact times into impact times at every server (including itself) by using the inter-
server delay table (see below).

12A border port ,s one that is connected with a port o a component in some other block of the logical partition. l3 ownng
component is a border component.
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Windows can be overridden during the simulation (see Section 3.4.2).
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Figure 3-1: Example of a Partitioned Device

At the inter-.qerver level, the WO quantities are abstracted into a table of inter-block event-consequence
propagation delays. The system conducts shortest-path analyses on the blocks of the partition and
constructs a table that associates with' each block and each of its downstream neighbor blocks the
minimum event impact delay to every other block. Hence, when a server says that it has a local event
that could affect a downstream neighbor at a certain simulated time, every server can use this table to
determine the minimum additional delay before the consequences of that event could traverse the
downstream neighbor and ultimately have a local preemptive impact.

3.4.2. Dynamic Synchronization Information
As mentioned in Section 3.3.4, complex components often exhibit varying consequence delays for events
on different state properties. This is particularly true of an abstract model like CARE. Also, sometimes
when an event is generated for some future simulated time, the functionality of the component in question
may imply that it can be consumed "eagerly" or with a higher WI, and thus, lower EST (e.g., when a
subcomponent of an lp does not require the time consistency providedby default). AIDE allows the
designer to convey this sort of information to the simulator by allowing metabehavioral declarations for
each component class. These declarations take the form of propositions that give scheduling hints to the

local server in terms of better bounds on the WI and WO of the component for events on specific state
properties. Such bounds are computed relative to the component's 1,'O ports at event-generation time

and passed to the simulator to be generalized to the local partition block.

AIDE provides the metabehavior form to declare the metabehavior rules and the minimum event
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propagation delay of a component class. It has a compiler to transform these rules into more efficient

procedural code. Details may be found in [10].

3.4.3. Synehronisction Algorithm
Once the static synchronization information has been compiled, the device is distributed as specified in

the partition. Components in each block of the logical partition are physically migrated to the

corresponding server machine (see Appendix I). The simulation is initialized. Figure 3-2 shows the

physical system organization of a simulation that has been distributed over 4 machines. Note that the

bidirectional network streams between server machines carry events (over the lines of the distributed

device) as well as synchronization messages.

Cp""A UN, z,,eulad a Serear I 5d, wacti,'dl PhisicdI w lisk g xotm I A Z

Serves i I-,L 2_i-:* / -. ,er

Line

Dev€€ phymaily puttored ova 4 hin.

Everns and sy anum news" m travel over the name vitam
A r.UM au like a FIFO quasi in a dira-so

Figure 3-2: Typical Organization of a Distributed Simulation

As mentioned above, each simulation server is a sequential simulator with additional capabilities for

synchronization. These capabilities include data-structures and procedures for generating, transmitting,

receiving and interpreting synchronization mesaages.

A synchronization message sent by a server consists of

1. The local server's unique identifier. For efficiency, this is an integer that is used as an index

into various tables.

2. The EST of the event at the head of the local server's eventlist at the instant that the

synchronization message was sent.

3. An alist of the local server's downstream neighbor servers and the lowest neighbor impact
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times (see 3.4.1) of all the local server's unprocessed events with respect to each of these. This

alist describes the preemptions that could happen in the next simulate phase.

4. An alist associating with each of the local server's downstream neighbor servers the earliest
simulated time of any events that were generated in the just-completed simulate phase that

- were sent (over component lines) to that neighbor server. This is the local server's
preemption alist and it describes the preemptions that actually happened in the previous
simulate phase.

* Generation. Synchronization messages are generated in the server process. EST and neighbor
impact times are obtained by scanning the eventlist. The preemption alist is obtained via a
table that is updated by the ports that forwarded events to an input port on some
downstream neighbor server in the preceding simulate phase. This table contains the earliest
simulated times of such events, if they were generated. It is reset at the end of a synchronize
phase and updated during a simulate phase.

*Transmission. Synchronization message transmission is done in the server process. The
server gains access to the stream (see Figure 3-2) to each server and sends (a copy of) the
message on that stream. Since events are generated in the server process only, and since a
stream acts as a FIFO queue, we are guaranteed that synchronization messages will arrive at
the remote server after any transmitted preemptive events and after all previous
synchronization messages.

&Reception. All stream reception is done asynchronously in a single background process (see
Appendix I). As preemptive events are received over a network stream, they are atomically
entered into the local server's eventlist. As synchronization messages are received over a
stream, they are atomically queued in a FIFO queue reserved for the sending server. The
server process polls this queue to determine whether a synchronization message has been
received from the sending server.

* Interpretation. Interpretation is done in the server process. Each server maintains 2 tables, a
next-EST-table and a neighbor-impact-table, each of which has an entry for each server
in the system. Ak'ter all synchronization messages in a given cycle have been interpreted (as
described below), the next-EST-table contains the correct lowest EST of each server in the
system and the impact-table contains the correct lowest neighbor impact times (see Section
3.4.1) for each server from any of its upstream neighbor servers.

During execution, an AIDE simulation server runs the usual cycle of two phases.

1. Synchronize. If the server was active (processed some local events) in the preceding
simulate phase, it generates a synchronization message as described above. A copy of this
message is transmitted to each server in the system.

Each server now uses the next-EST-table that was computed in the preceding synchronize
phase to determine which servers were active in the preceding simulate phase. This
determination is analogous to that done to find out whether the local server was active (see
below). It waits to receive a synchronization message from each of these servers. Once a
server determines that synchronization messages have been received from all the active servers,
it interprets these messages.

The next-EST-table is filled in first. The EST reported in each synchronization message is
initially entered for the corresponding server. Then the preemption alists are merged into the
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table entries - an-E ST is replaced if a preemptive event with a lower EST was forwarded to a

server from one of its upstream neighbor servers. 13 Then the neighbor-impact-table is updated.

Initially, all reported neighbor impact times from all non-preempted servers (see previous

paragraph) are minimized into their downstream neighbor servers' corresponding impact-table

entry. The neighbor impact times for each preempted server are recalculated (using the

compiled inter-server delay table) and merged into the impact-table.

At this point the next-EST-table and neighbor-impact-table correctly reflect the system state.

Now the local server extrapolates the neighbor impact times to determine whether it will be
actively simulating during the next simulate phase. This is done by using the inter-server
delay table to calculate the local preemption time (PT), which is the minimum impact time
of a preemptive event arrival from any other server via a path through any of its downstream
neighbors during the next simulate phase. If the local EST (taken from the next-EST-table
and thus correct) is less than PT, then the server will be active; otherwise, it will be inactive.
For efficiency, similar activity calculations for the other servers in the system are deferred
until the local server has to wait for them to report in the next synchronize phase (see above).

2. Simulate. If the server determines that it is active in this phase, it processes all the existing
local events that have EST less than PT (making use of WI). Events from upstream servers
may be asynchronously received for border input ports but they will 6e for simulated times
not less than PT. Similarly, events on local border output ports may be transmitted
asynchronously to remote input ports. As local events are generated, they are sorted by EST
into the eventlist; they may be safely processed in the current phase if their EST is less than
PT.

During the execution of a distributed simulation, the user may interactively issue commands to the
servers to break, continue, or reset the simulation. The system currently provides no instrumentation
capabilities aside from a general text trace facility.

3.4.4. Acceptability of the Algorithm
To show that this algorithm is acceptable, we first note that the simulation activity of a server during
any simulate phase does not violate the acceptability condition if we assume that the minimum event
delays and, hence, WI calculations, are correct. This can be seen in the fact that the server essentially
runs a sequential simulation in this phase, processing all existing events that cannot be preempted by an
external arrival at a border input port (which will have a simulated time of at least PT) during that
phase.

Secondly, the (single) network communication stream between any two servers behaves as a virtual queue
for preemptive events and synchronization messages. Therefore, preemptive events (from an upstream
neighbor) show up in a server's eventlist before a synchronization message denoting the completion of the
current simulate phase at the upstream server is received. Therefore, local simulation state is consistent
before a server performs the activity calculations for the next simulate phase.

Thirdly, incorrect information regarding minimum ESTs (caused by the interval between sending a

synchronization message and receiving all other synchronization messages, during which an event with an
earlier local EST could be received from an upstream neighbor server) is overcome by having each server

13 The preempted server may have generated its synchronization message before the arrivil of the preemptive event. Hence. the

local EST it reported may be inaccurate. This could happen it the preemptive event had X lower simulated time and, hence, EST

(because the component of the preemptive event will have WI=O), than the event that was previously at the head of the server's

eventlist.
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include in a synchronization message the minimum times of remote events generated for every

downstream neighbor server during the preceding simulation phase. Hence, once all the required

synchronization messages from active servers have been merged in a synchronize phase, a server's next-

EST-table correctly reflects the state of the entire system. If component event delays are correct, then so

are the WO calculations and so is the precompiled inter-server delay table; therefore, a server's neighbor-

impact-table at this point will accurately reflect the earliest possible preemptive arrivals at each neighbor,

and the PT and activity calculations (which extrapolate neighbor delays using the delay table) will also be

correct.

A formal proof of acceptability can be constructed by following the methodology given in (31.

3.4.5. Deadlock Avoidance
Peacock et al have shown that a cyclic path of connected zero-delay components is a necessary condition
for deadlock to occur in a distributed simulation (8]. Since AIDE requires that components have a
minimum, positive delay, and since a server simulates at least one component, this condition can never be
satisfied in a distributed AIDE simulation. Hence, deadlock is avoided.

3.4.8. A Probabilistic CARE Model
To evaluate the performance of the AIDE algorithm, we use a probabilistic model of a multiprocessor
based on CARE. The characteristics of this model were induced from CARE's event history in a serial
simulation. As mentioned earlier, CARE exhibits clusters of "communication" events (representing packet
routing between nodes) that are localized in simulated time as well as over the processor grid. These are
intermixed with slower "computation" events (representing processing activity within a node) that have
larger, more varying simulated time periods. In using a probabilistic model, we bypass many of the
additional software issues involved in distributing CARE programs while still retaining information that
allows us to predict the performance of a distributed simulation of the architecture.

The device to be simulated consists of a quad-connected array of processing elements (PEs). Each PE
does both computation work and local message routing in the array. The quantity and real and
simulated time durations of the events consumed by a PE are controllable through the use of
parameterized probability distributions to represent each type of activity. Typical sizes of the array are
64 and 256 PEs.

3.4.7. Performance Analysis
Table 3-1 presents data collected for distributed simulations of two models. The first five experiments
were done with a 256-PE probabilistic CARE model on 1, 2 and 4 machines. This model was

parameterized to exhibit different computational characteristics by varying the real-time to process events
(F=fast, S-slow), the number of initial events (H=heavily loaded) and their staggering in simulated
time (D=dispersed), and the regularity of event consequences (R=more regular, N=normal, CARE-like).

The sixth experiment used a different behavioral characterization of the CARE structural model in which
intra-PE "computation" was specified in detail while inter-PE "communication" was more abstractly
specified. The array was heavily loaded, with initial events at each PE. The purpose of this particular

experiment was to test AIDE's performance on a model that exhibited the desirable characteristics for
speedup delineated in Section 3.3.3.

In each experiment, speedup was measured by comparing the event processing rate (in events processed
per elapsed second) achieved by the distributed system to that attained in a serial simulation of the

device. Concurrency was measured by sampling the number of servers that actively simulated in a
system cycle (the sampling was done every cycle).

The data is presented in terms of the time breakdown at a typical server both in every cycle (Table A)
and in every active local cycle (Table B). In other words, Table A averages a server's performance over
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all system cycles (irrespective of concurrency) and Table B averages a server's performance over those

cycles in which it was actively simulating. The latter gives a better idea of system performance per cycle

since it takes into account the effects of concurrency.

The important observation is that, for the usual CARE model, only experiment I achieved any performance

improvement over the serial case (225/200). Furthermore, this speedup was at best marginal, although

average concurrency was nearly optimal (3.9/4). However, experiment VI with the "good" model

demonstrated an excellent performance improvement; the ;peedup factor was 1.73 out of a best-case 2. In

the other experiments, the ratio of simulation work done Go synchronization overhead was simply too low,
resulting in performance losses, so that-the system could not even match the serial event processing rate.

Another observation is that serious limits on server concurrency appear to be unavoidable in a model with
the structural and behavioral characteristics of CARE. This is because (I) the model attempts to model
inter-PE behavior (communication) in much more detail than intra-PE activities (computation), (2)
packet routing done by the PEs is based on the dynamic network load in the array, and (3) the PEs are
closely.coupled in that each PE can route a packet to any other PE in the array with a small number of

fast inter-PE routing hops. It is typical, therefore, that the appearance of a communication event at any
PE within a server severely limits the "looseness window" or degree of independence of the other servers,

because it could potentially have a consequence on any PE in the array in the very near simulated time

future. This ultimately curtails the concurrency (and therefore the speedup) of the system because of the

similar consequent communication events that result as the CARE packet moves through the inter-PE

lines. Additionally, when pending PE computation events are consumed, they tend to have

communication consequences for simulated times far beyond those calculated using the inter-server event

propagation delays on packets being routed in the array. Comparing experiments I and II demonstrates

this; in experiment I, the "regular" model's event pattern was such that the consequences of computation

events were generated with a delay that was close enough to the inter-server windows to raise concurrency

to 3.9/4 (versus 2.2/4 in experiment II with the "normal" behavior model).

The close coupling of PEs also decreases speedup because of all the associated synchronization overhead

(communication and serialization) that emerges from the resulting close coupling of the similation servers.

A large part of a typical CARE event set consists of the serializing communication events, well-staggered in

simulated time and well-distributed over the array, and the dynamic routing scheme of CARE makes it

impossible to bring any better knowledge to bear on the preemptive bounds of such events to help the

servers loosen their event-processing windows. The "good" model, on the other hand, manages to

sufficiently decouple the PEs at the simulation level to attain a marked decrease in the number of

synchronization points for the distributed simulation, with corresponding performance gains.

One final reason for the poor performance of the system is that it often is the case that even if

concurrency is optimal there are actually only very few events to process at each server. The data shows

that it is much cheaper to process an event (of the order of 1 millisecond) than to send and receive a

synchronization message (of the order of 100 millisconds). Hence, in experiments II and lMl we see that

lower concurrency leads to a better overall event-processing rate.

Where does the time go during synchronization? Table 3-1 shows that sending a synchronization message

takes about 20 milliseconds per remote server in local processing overhead at the sending server (see row

Local Stream). This overhead consists of byte-coding the LISP data, packet allocation, and the

protocol-level overhead associated with stream reliability (e g., packet sequencing, acknowledgements and

retransmissions) and network interface access. There is a greater local processing cost at the receiving

server; besides the costs mentioned above, packet reception costs include process-switching for the

scheduler and the network receiver processes and various protocol-level checks to ensure the integrity of

the data contained in a received packet. Unfortunately, an active server has to send a synchronization

message to every other server during a synchronization phase, so this cost grows with concurrency and

with the number of machines. However, only active servers contribute to this cost, so we have made some

gains over the naive O(N 2) approach, and high concurrency is quite rare in practice.
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Experiment I II III IV V VI"

Total Server Machines 4 4 2 2 2 2

CARE Model Type R,F N,S,H N, S,H N,D NH 'Good*
Avg Concurrency 3.9 2.2 1.5 1.3 1.6 2
Avg Event Rate (e/s) 200-250 60-70 100 124 140-150 551
Serial Event Rate (e/9) 200+ 120 130 180 180? 318

A. Server performance per SYSTEM cycle

SYNCHRONIZE (Ms) 343 188 129 83 103 1312
I ---------------------------------------------------------
Send Sync (Ms) 66 38 15.7 12.15 15.84 35.5
Compute (Ms) 3 1.5 1.85 1.15 1.84 19.9
Local Stream (Ms) 63.3 36.5 13.83 11 14 18

i.........................................................
Receive Sync (Ms) 275 150 111 70 87 1278
Compute (Ms) 2.5 2.4 0.04 0.05 0.04 <1
Walt & Stream (s) 273 147 111 70 87 127,
-----------------------------------------------------------------

Interpret Sync (Ms) 2 2 0.54 0.53 0.53 1
---------------------------------------------------------------
SIMULATE (M9) 161 52 141 58 108 11853

B. Server performance per local ACTIVE cycle

SYNCHRONIZE (Ms) 342 218 130 88 108 1312

Send Sync (Ms) 67 68 20 18 19 35.5
i........................................................
Per Stream (Ms) 22 22 20 18 19 35.5

---------------------------------------------------------------
SIMULATE (Ms) 163 88 183 90 135 11853

Folding Simsteps (#) 1.85 2 3.9 3.7 3.8 57.9
Remote Events (4) 1.2 0.28 0.21 0.13 0.28 5.8
Remote Events (Ms) 26 6 4 2 5 112

Notes

" Table A breaks down a typical server's activity in a system cycle as time spent in simulation
and synchronization. Synchronization consists of sending, receiving, and interpreting sync
messages. The first two of these have a computation cost and a communication cost.

" Table B reflects the fact that only active servers in a system cycle actually send
synchronization messages and simulate. However, as every server must receive sync messages,
we do not repeat that data here.

" Locil Stream denotes local overhead in getting a message to a network stream.
* Wait & Stream denotes the average wait until the last sync message for a system cycle is

enqueued at the recipient server. It does not distinguish load imbalance from message latency.

The 'good' model is discussed in the text.

Table 3-1: Performance Data for 256 PE Probabilistic CARE Model
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Based on the above analysis, we may assume that the average latency of a synchronization message is at

least 40-50 milliseconds per remote server. The Walt on Stream numbers in Table 3-1 measure the

average time a server (whether active or not) spent per cycle in waiting for the last synchronization

message to be locally received. As such, this data cannot distinguish point-to-point message latency from

cases in which synchronization messages were simply transmitted late due to the transmitting server being

busy- simulating, or, conversely, cues in which synchronization messages from less busy servers were

already queued at a busily simulating server before it started the wait. Load imbalance is the most

probable reason that the servers in experiment VI had an average synchronization wait of 1276
milliseconds even though concurrency was optimal; message latency cannot be more than a minor part of
that wait!

3.4.8. Performance Characterisation
In summarizing our performance results, we return to the conditions for speedup put forth in Section
3.3.3 and characterize the AIDE algorithm with probabilistic CARE in terms of these.

" Maximum concurrency. AIDE tries to maximize concurrency in the simulation by
precomputing good static lower-bound path delays, allowing the user to specify better dynamic
bounds, and maintaining and using WO to each neighbor server in determining better path
delays for inter-server preemptions. The improvement in concurrency over an early
implementation that simply did the first of the above (and never achieved more than about
1.1/N concurrency) has been impressive. Furthermore, the computational overhead
introduced by maintaining and using this information has been completely swamped by the
communication cost of exchanging it, except in experiment VI, where both costs were
comparable.14 However, contrasting experiment VI with the others shows how a suitable model
can make good use of this capability. A CARE-like model appears unsuitable by virtue of its
close coupling and staggered, irregular event pattern.

" Maximum ratio of simulation work to synchronization overhead per active step. The WI and
WO mechanisms serve to lengthen the simulation phase at a server. However, these
mechanisms are only useful insofar as the structural and behavioral characteristics of the
model admit; generally, the features that adversely affect concurrency also tend to decrease
the ratio of simulation work to synchronization overhead. The beneficial effects of the AIDE
mechanisms can be estimated by the number of simulation steps that occur per active step in
Table 3-1. Experiment VI with the "good" model averaged nearly 60 simulation steps per
synchronization at each server, and the simulation work per active step was an order of
magnitude greater than the synchronization work. Not visible in the table is the observation
that WI often results in events in the very near future being simulated, by virtue of their
EST, in the current simulation step and hence (some of) their consequences being effectively
hidden from synchronization. The ratio of useful work to overhead decreases with more
machines since the communication cost of synchronization usually increases and the average
simulation work per server decreases. On the other hand, concurrency, and hence the
potential for speedup, tends to increase with the number of machines (to a certain point).

This creates a difficult trade-off in determining the most effective number of machines to use
in the simulation of a given device.

o Load balance. The effect of load-balance on speedup is perhaps the hardest facet of the

system to quantify. There is no question that load balance is as much a function of the
behavioral characteristics of the model (regular events vs. more random events, the number of

t 4This was due to the Iarge number of events that had to be searched in determining neighbor impact times.
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events processed at each step and the work involved in processing them) as of the partition.

The effects of this are hard to measure in the current implementation of AIDE because it does

not have sufficiently detailed measurement capabilities. It would be interesting to determine

whether there is any correlation between the load-balance of an application 'atop CARE and the

load-balance of a distributed simulation of the architecture running this application. Other

- factors affecting load-balance include the activity of the incremental garbage collector at a

server, relative server machine speeds, and network activity.

4. Conclusions and Research Questions
In AIDE we have created an environment that is capable of capturing and validating interesting designs.
The system can also serve as a testbed for investigating the performance of distributed simulations of
such designs. • We have carried out such an investigation for a probabilistic model of a multiprocessor
system that is based on the CARE machine architecture.

4.1. Distributed Simulation

AIDE uses its knowledge of the device being simulated to increase both the inter-server concurrency
(coarse-grain) as well as the ratio of simulation work done to synchron?.ation overhead (akin to fine-
grained concurrency) achieved in a distributed simulation. Empirical evidence indicates that such
knowledge is essential if distributed simulation is to realize any performance gains, and that the

mechanisms through which the AIDE system exploits this knowledge are effective. However, some models
are inherently limited in the amount of concurrency they allow. Tightly-coupled models that do mixed-

mode simulation (for example, CARE) tend not to admit much coarse-grained concurrency; synchronous

models (for example, logic circuits) and loosely-coupled, mixed-mode models tend to admit much more.
Since the coupling at the model level has a direct counterpart in the coupling at the server level (by virtue

of the topological partitioning scheme), this translates into increased synchronization overhead that

usually results in performance degradation.

In addition to concurrency, the simulation work done between synchronize phases in a distributed

simulation must be substantial, relative to the overhead of synchronization, if any performance gains are

to be realized. The indications from our experiments with the AiDE system are that, for speedup to be

realized, either

9 the processing 'of a typical event (that is, a behavior invocation) must involve substantial

computation, or,

o a large number of events must be processed between synchronizations, or,

* communication costs must be reduced.

We feel that in the simulation of CARE-like devices that use closely-coupled components and mix detailed
simulation of inter-component interaction with more abstract simulation of intra-component function,
achieving the first two goals is unlikely to yield satisfactory performance improvements. The prognosis is
better for the simulation of very large c.AE-like devices on a small number of machines or for the
simulation of more loosely-coupled or synchronous devices. However. the third condition seems desirable
in all cases, and it is probably achievable through software or hardware optimizations. This promises
substantial speedup gains for suitable models.

Lastly, the AIDE synchronization algorithm is not sufficiently well-suited for closely-coupled models that
exhibit a behavioral activity pettern in which events are well-scattered over the structure of the model.
AIDE's structural partitioning scheme, in conjunction with the relatively close behavioral coupling between
different structural "pieces" of the partitioned device, directly translates into load imbalances during the
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distributed simulation of such a device. The end-effect of this is, the serialization of the distributed
system, often resulting in performance losses. The effects of imbalance tend to diminish in loosely-
coupled devices and in those that exhibit relatively synchronous events in a most parts of their structure.

4.2. Open Questions
There are some obvious issues that need to be resolved with respect to the distributed simulation
algorithm in AID. The first task is to identify and reduce the communication overhead seen in
synchronization as this has the potential to make a vast difference in performance. Another task is to
attempt a reduction in the total number of synchronization messages that are sent during a simulation,
thus improving the simulation/synchronization cost ratio. Perhaps some type of multicast could be
developed, thus decoupling the cost of syschronization from the total number of machines, or the basic
synchronization algorithm could be modified so that an active server need not inform every other server
of its local state. Also, if the costs of communication could be substantially reduced, it would be worth
investigating whether the lock-step synchronize-simulate system cycle could be improved upon to reduce
the effects of load imbalance on performance.

Finally, it appears to be a challenging problem to actually implement the CARE specification in AIDE and
execute distributed simulations of the concurrent machine "running" application programs. We expect
that this will raise interesting problems in the areas of distributed debugging, distributed
instrumentation, and data consistency over multiple Lisp environments. We hope that improvements in
the performance of the AIDE synchronization algorithm will make such an effort worthwhile.
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I. The Distributed Object Subsystem
In this appendix, we briefly summarize the extensions to the ZE TALISP programming environment that
support the distributed environment of AIDE. The underlying idea is to emulate a single address-space

over multiple address-spaces by implementing remote-addresses. This implementation is done through

the cooperation of three types of entities - a transaction stream manager, an interned object, and a

remote object. Each of these is implemented via the FLAVOR system.

An interned object is the only Lisp object that is required to exist as a single incarnation in this emulated

single-address-space. Its representation on a remote machines that needs to "point" to it takes the form
of instance of a remote object on that remote machine. Such a remote object essentially contains a local

pointer to the transaction stream (called its access-atream) that links the local host to the host that
contains the real interned object, and a unique ID within the context of that stream that resolves to its
real incarnation on the other side. Such a bidirectional transaction stream manager exists between every
pair of hosts.

By requiring that all (data and function) accesses of interned objects be through the form of messages
sent to (a local pointer to) that object, we can have a remote object can trap all accesses (messages) at the
local host and forward these to its real incarnation at its residence host. There the appropriate method
gets invoked, either in a default background process if the call is for effect, or in a new process if it is for
value. When a message is sent down a transaction stream for value the sending process blocks until the
result is received by it (in an emulated value cell). When a message is sent for effect (for example, an
event from an output port to a remote input port during distributed simulation), the local sending process
simply continues as normal. Whether a message is sent for value or effect is currently programmer-
specified. References to non-interned objects always result in an isomorphic copy of that object being
transferred across the transaction stream.

Such remote method invocations are rendered fairly efficient by using an extension of the Lisp-machine
BIN-file data transfer protocol. The generality of the transaction stream interface also allows the
migration of partial networks of instances to various machines by copying them to the destination
machine and replacing all local pointers to them by forwarding pointers [131 to newly-created remote
objects (as is done during distribution of the components of a design), the shadowing of state and

messages by remote objects (as is done for the name slot of all AIDE components), remote procedure and
function calls (by transferring a function specifier or function along with locally evaluated arguments and

funcalling it remotely). The system provides various operators to carry out such operations, detailed in
(101.

Transaction streams are built on reliable byte-streams. We use a system of locks to guarantee the
consistency of a Igical message transfer along the stream, since the stream may be multiplexed between
many processes and interned objects.

The distributed object subsystem has proven its utility time and time again during the development of

AIDE. Its basic mechanisms currently implement functionality that ranges from user control of the
simulation servers to cooperative event transformation between components to instrumentation. As an
illustration of of its convenience and power, we report that an (admittedly naive) implementation of a

remote graphics extension took roughly twenty lines of code to specify and about an hour to debug.

AIDE's graphics interface does not now distinguish between components that are remote and those that are
local.
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1 Architectural Model

In ' we described the programmer's interface to the CARE architectural simulation system[1].
The interface, called LAMINA, provides support for driving CARE models via application programs
written in functional, object-oriented, or shared variable styles. In this paper we document a
shared memory Lisp package, called QL. that is built upon the LAMINA shared variable model.
QL is based on concepts from Multilisp[4] and QLAMBDA[3]. L.:,e them, it provides constructs
for expressing parallel computations that augment an underlyii,- serial Lisp system. QL uses
Zetalisp[5] as its base language.

The remainder of this section briefly reviews and extends the basic LAMINA shared variable model.
Section 2 describes the QL language constructs and section 3 describes its instrumentation facilities.
We assume that the reader is familiar with LAMINA as described in (2].

1.1 Shared Memory in CARE

As shown is figure 1, a shared memory CARE model consists of a number of sites, each of which
behaves either as a processing site or as a mcinory site. A processing site has processor (i.e.,
etaluator and operator [1]) resources (P) and some amount of local memory (m). A memory
zite has a memory controller (.ICj and some amount of shared memory (M). The sites typically
communicate via a point-to-point network or a system of busses.

Shared memory cells are constructed from atrean.s encapsulated in remote addresses [2]. Cells are
alocated on memory sites, and processors access them only thiough memory controllers. Cells hold

'This work was supported by DARPA Contract F30602-.3-C-00I2. by NASA Ames Contract NCC 2-220-S1, by
Boeing Contract W266875. and by Digital Equipment Corporation.

4-325



1 ARCHITECTURAL MODEL

memory sites

M M M M

MC MC MC M

commnunications system

processing sites

Figure 1: Processing and Memory Sites

a single value at any time. They may be aggregated into data structures such as lists and arrays.
LAMINA provides constructs for allocating, reading and writing such data structures as part of its
shared variable interface.

Address Spaces

As shown in figure 2, the address space of a LAMINA application is partitioned into local, dynamic
and static spaces.

Local space is distributed among the processing sites of the system, i.e., in the local memories
of the processors. In LAMINA, data structures created in one processor's local space cannot be
directly accessed by another processor. This is further restricted in QL in that local data structures
can only be accessed by the local processor.1 They must be copied into dynamic space before other
processors can access them; this is discussed further in section 1.2. Data structures in local space
are manipulated through the usual Lisp functions executed at the local processor.

'This is because the QL shared memory model does not currently admit globally accessible memory controllers at
processing sites. Such controllers are only available at memory sites. This also implies that structures encapsulated
by the reference primitive of LAMINA cannot be manipulated with the shared variable operations.
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Figure 2: Local, Dynamic and Static Addresses

Dynamic space is distributed among the memory sites of the system.2 All sharable data structures
exist in dynamic space. They may be manipulated by the LAMINA shared variable operations
from any processing site.

Finally, "immutable" objects such as compiled functions and keyword symbols reside in static space.
We assume that such objects are available at each processing site (corresponding to a 100% cache
hit rate).

1.2 Extensions to the Shared Memory Model

In this section, we describe some extensions to the LAMINA shared memory model that go beyond
allocating, reading and writing shared cells as described in [2].

2The exceptions are futures and shared-queues, which are created in dN namic space at processing sites and are
martaged by the operators at those sites. They can be referenced from all processors.
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Coded Blocks

Structures created in local space can be manipulated very efficiently by the maintaining processor

because there is no need to traverse the communication facility on every access. However, as

mentioned earlier, structures created in the local space of one processor cannot be shared with
other processors. They must be first copied into dynamic space. For convenience, we provide an
automatic facility to accomplish this that is similar to the means used to communicate values in
object-oriented LAMINA.

Whenever a processor attempts to store a pointer to a local structure into dynamic space, the
operator at the processing site recursively traverses the structure and copies it into a form that in-
cludes only static references (to objects in static space), dynamic references (to cells and structures
composed of them in dynamic space), internal reff -.nces (to subcomponents of the structure value
in local space), and self-referentials (i.e.. "immediate" objects like fixnums and small floating-point
numbers). This is then allocated as a contiguous coded block in dynamic space and a reference
to it is stored into the original location. The encoding has associated costs for interrupting the
operator and linearizing the structure, and the processor stalls until the entire write completes.

Similarly, when a processor reads a reference to a coded block from a cell in dynamic space,
the operator at the processing site immediately retrieves and decodes the block, yielding a new,
independent structure in local space that has the same form and internal relationships as the
original. Again there are associated operator costs for the decodiug, and the processor stalls for
the duration. Repeated reads of the same coded block provide new, non-eq copies of the same
structure.

This permits a QL program to conveniently mix globally mutable cells ith independently mutable,
structured values. Note that an application can choose to ignore this feature if it is required that
only "pure" shared memory operations be used.

QL uses this facility when copying closures between processing sites. This is co~ered in section 2.1.

Named Structures

Named structures[5] are a useful data abstraction in Lisp. We provide a named structure type.
:named-shared-array, that ma% be ued ith the Common Lisp defstruct macro to define data
structures that reside in dynamic space. Named shared arrays are used to represent futures in QL,
as described in section 2.1.
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Futures in QL are built from the futures provided by LAMINA. The latter are only created

at processing sites and are managed by the operators at these sites. The primitive function

shared-read-if-present, when called with (a reference to) a LAMINA future, will return only

when the future has a value. The future may reside on any processing site and may be accessed

from any processor. The calling process is always descheduled.

Another useful shared memory primitive is shared-replace-conditional. The form

(shared-replace-conditional cell old new)

atomically compares the contents of cell with old, and, if they are eq, replaces the contents with
new. It returns t if the replacement took place: otherwise, it returns nil. The arguments old and
new cannot be in local space. This primitive is used in QL to ensure that a future is determined
only once.

2 QL

In this section, we describe the syntax and implementation of QL. All symbols denoting functions,
macros and data structures are available in the ql package unless otherwise qualified.

2.1 Future, Delay, and Value

The fundamental means for evaluating an expression in parallel in QL is through the use of the
future macro. The form

(future expression)

immediately creates and returns a future object that will hold the result of executing expression
\ hen it is available. Free variables in expression are lexically closed o~er and the closure is scheduled
for execution according to the scheduling strategy in effect.

The closure environment formed bN future is initially constructed in the local space of the calling
process. It is then recursi'ely copied into a coded block in dynamic tpace. When the closure finally

executes, free variables that contained local structures in the caller's process will contain new,
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isomorphic local structures in the called process. Therefore, any variables that are to be mutably

shared between the caller and the callee must be represented as shared cells.

Futures are eagerly evaluated in the sense that a closure scheduled via future will always be run.

QL provides a delay construct to serve the needs of demand-driven evaluation. The form

(delay expression)

otherwise behaves like future, but does not schedule the closure corresponding to expression until
there is an attempt to determine the future.

Futures are not automatically determined in QL: there are no built-in strict functions (but see
qlet). Instead, the function value is provided. The form

(value potential-future)

is the identity function on non-futures: otherwise, it blocks until potential-future has obtained a
value-descheduling the calling process if it has not-and returns the result of recursively calling
value on this value. In the case of a delay, the closure that will determine the value of the future
is first scheduled if necessary. value always returns a non-future as its result.

A future may be shared between processes; it is guaranteed to be determined at most once. Any
object may be tested to see whether it is a future (or delay) by the predicate future-p.

Implementation Details

A future in QL is represented by a named structure of type :named-shared-array with the
following slots:

9 satisfied : This is a flag, that indicates whether the future has a value or not.

* cell : This is a LAMINA future which will contain a reference to the value of the future
once it is available.

* value: The actual value of the future is stored here. Note that this value may itself be a
future.

* id : This is an integer identifying the future for instrumentation purposes.
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A delay is represented by a named shared structure that includes the future structure. It has the
following additional slots:

e closure : This contains a reference to the closure that will produce the value for the future.
The reference itself always contains a coded block reference, which contains the closure.

e requested-p : This is a flag that is used to ensure that closure is scheduled at most once.

2.2 Qlet

Like QLAMBDA, QL provides the qlet macro for parallel lambda binding. The form

(qlet predicate bindings . body)

behaves like let if predicate evaluates to nil. If predicate evaluates to a non-nil value other than
the symbol : eager, then each of the bindings is made in a separate process, and the calling process
blocks until all the bindings have been made before continuing to exaluate body. Finally, if predicate
evaluates to :eager, the bindings are started in separate processes but the calling process proceeds
to evaluate body, blocking only when it requires the value of one of the bindings.

Note that the values of free variables that are closed over by each binding form in bindings are
independently copied from local space into dynamic space if necessary.

qlet is implemented in terms of future and value.

2.3 Other Constructs

QL provides a number of other constructs that are based on future and value. Some of these are
listed below.

e (qspawn predicate . expressions) behaves like progn if predicate evaluates to nil, otherwise
it evaluates each sub-expression in expressions as a future. It always immediately returns
nil.

e (qmapcar function list. othr-args) calls function with each element of list and with other-args
in a separate future, returning a list of the values of each future. The input list must be in
local space, and the result is also constructed in local space.
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* (qmapc function list. other-args) behaves like qmapcar but does not wait for the futures to

be determined. It returns an undefined value. The input list must be in local space.

2.4 The Qlambda Process Closure

QL provides a qlambda construct for creating process closures[3]. However, unlike QLAMBDA's

construct of the same name, there is no predicate to control whether the closure is run as a separate

procebs 3 , nor can the closure be directly applied via the usual Lisp mechanisms.

The form

(qlambda lambda-list, body)

immediately creates a new process closure on a random processing site that, when later applied,
will run the lexical closure defined by body with arguments bound according to lambda-list. Note
that the values of free variables in body will be copied into dynamic space (as a coded block) if they
are in local space.

qlambda blocks the calling process until the process closure has been created and returns a reference
to it. It does not invoke the closure. Typically the result of calling qlambda is stored as a local or
global variable for later use.

A process closure created by qlambda may be applied from any process by passing to it a list of
evaluated arguments. The closure executes such calls by doing the appropriate lambda-binding,
evaluating body in this context, and passing the result to the caller. Each application of the

process closure is atomic with respect to the others. QL provides the following functions for closure
application:

* (apply-qlambda closure-reference args) applies the process closure identified by closure-

reference to the list of evaluated arguments in args, blocks until a value is returned from
the application, and returns this value.

* (funcall-qlambda closure-reference . args) behaves analogously to apply-qlambda.

a (invoke-qlambda closure-reference . args) is a call for effect on the process closure. It
passes a list of the evaluated args to the process closure identified by closure-reference and
immediately returns without blocking.

3This is because a closure that is called b% multiple processes needs to be atomic with respect to each call to
onsure consistency An ordinary closure does not have this property. Rather than associating a busy/free flag with
a closure, we decided to restrict the semantics of qlambda to always create a new process.
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Implementation Details

Process closures are represented using Flavors[5] instances in (the simulation of) QL. Instances of

the qlambda flavor have the following instance variables:

e Arg-Queue : This is a LAMINA shared queue into which references to the parameters and
return address of each application of the qlambda are put (via cu:shared-enqueue). This
queue also serves as the "handle" to the qlambda.

e Closure : This is the closure that is applied to the dequeued arguments whenever the qlambda
is applied.

When a qlambda closure is applied, a new LAMINA future is created by the calling process to
hold the result of the application. The future and the evaluated arguments are formed into a list
which is moved into a cell in dynamic space at the associated memory site of the local processing
site. The cell is queued on the argument queue of the closure and then the calling process blocks.
Some time later the closure is applied to the (dereferenced) arguments and a new cell containing
the returned value is stored as the value of the future. The calling process unblocks and reads this
cell to obtain the result of the qlambda application.

2.5 The Task Scheduler

The closures requested to be scheduled via future and delay are called tasks. QL provides a
scheduling strategy that runs these tasks in processes.

QL's current scheduler may be characterized as centralized and demand-driven. References to
requested tasks ,.re queued on a central shared queue. Free processors request tasks from this
queue and run them locally. Processors are free if they have no runnable processes: processes that
are blocked on futures are not runnable. There is no preemptive scheduling at a processor: a
process runs until it either blocks or completes.

The function initialize-ql initializes the QL scheduler. It must be called by the application
code during startup. The function. available-processors is used at that time to set the pool
of processors on which QL tasks may be run; by default, all processors are part of the pool. The
global constant ***task-queue*** points to the cu:shared-queue of requested QL tasks. This
queue is created on the processor at which the call to initialize-qi is made.
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3 INSTRUMENTATION

3 Instrumentation

QL is provided with instrumentation to study the performance of applications written in the lan-
guage. In particular, an instrument of flavor ql-instrument may be used to visualize the perfor-
mance of the system. Figure 3 shows the panels of such an instrument, described below.

Processor Queue History is a scrolling line panel displaying the available parallelism in the
system over time. The horizontal axis depicts simulation time and the vertical axis shows the
total number of runnable and running processes in the multiprocessor model.

Processor Queue Load is a scrolling bar panel displaying the queue load per processor over
time. Queue load is defined as 1 - 1/(1 + N), where N is the number of runnable processes
at the processor., The horizontal axis represents simulated time. The vertical axis represents
the processors in the system. Gray shades depict the total process queue load per processor
according to the mapping along the right margin of the panel. This panel is useful in seeing
whether the system load is balanced.

Network Latency is a scrolling line panel displaying the communication latencies in the system.
The horizontal axis shows the simulation time of packet arrivals at memory controllers and
operators. The vertical axis shows the transmission delays experienced by these packets.
Memory latencies are approximately twice the displayed latencies.

QL Task Activity is a scrolling text panel showing the activity of application tasks. Each line
of text in this panel corresponds to a QL task and shows the following information:

* ID is the unique integer identifying the task.

* Status is the most recent status of the task: * indicates a running task, ? indicates a
task that is blocked on a future, and ! indicates a terminated task.

* Activations is the number of times the task was scheduled to run.

* Run is the cumulative run time of the task in milliseconds. This does not include time
accessing shared memory.

* Stall/MemOps is the cumulative time, in milliseconds, spent stalling on shared memory
operations, and the total number of such operations performed by the task.

e Blockedis the total time. in milliseconds, for which the task has been blocked on futures.
This does not include time spent waiting for processor resources.

* Runnable is the total time, in milliseconds, spent by the task in a runnable state, i.e..

waiting for processor resources.

* Site is the processing site at which the task is located.

* Task is the top-level closure of the task.

The lines are sorted according to the time the task was most recently scheduled.
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4 Current Status

QL is an operational shared memory Lisp simulation, although it is by no means a complete Lisp
implementation. The non-uniform treatment of shared data structures (which are dealt with "by
reference") and local data structures (which are dealt with "'by value") somewhat modifies the
semantics of traditional Lisp operations. This is particularly evident in the case of free variables
that are closed over with future and qlambda-variables in local space are always copied and
cannot be mutably shared. Furthermore, simulation efficiency concerns dictate that the Zetalisp
functions that underlie QL are generally only applicable to local data: shared data structures must
be manipulated via the LAMINA shared variable operations. The same concerns also lead to the
values and property lists of symbols not being modeled as shared cells in dynamic space.

The most useful style of programming with QL is one that uses shared ,ells to represent all and
only potentially mutable shared data. QL has been successfully used to construct a "blackboard"
shell system for the development of concurrent expert system applications.
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Abstract

We describe the design and performance of a soft real-time report integration Svs-
ten. written in a concurrent object-based programming language. We introduce the
model that forms the foundation of the language-that of pipllines of asynchronously
communicating objects executing data-driven, run-to-completion tasks-and discuss the
mapping from the problem domain to the model through the design of the application.
Using an instrumented architectural s:mulation system, we quanfify the performance of
the system over a range of one to 2%6 processors in terms of its sustainable input data
rate. We show that the system approaches the limits imposed by task granularity and
message handling costs when there is no contention for processing resources, and we
study the effects of load imbalance.

1 Introduction

At the Advanced Architectures Project (AAP), we have been interested in speeding up
the dass of applications known as soft real-time report integration systems [10] through
parallelism. This paper documents one of a number of efforts within the AAP to achieve
this goal [2,15,18,19].

Our application is a system for interpreting preprocessed, passively-acquired radar emis-
sions from aircraft. The system. called ELINT, is one component of a multi-sensor report
integration system [26]. It was originally implemented as a "blackboard" [17] system using
the AGE [16] shell, and later reimplemented in an experimental concurrent object frame-
work called CAOS [21]. The results of that work [2] led to the version reported here.

'This work was supported by DARPA Contract F30602-85-C-0012, by NASA Ames Contract NCC 2-
220-SI, by Boeing Contract W266875. and by Digital Equipment Corporation.

?A condensed version of this paper was presented to the 1988 SIGPLAN Workshop on Object-Based
Concurrent Programming (6].
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Our programming language is a concurrent, object-oriented extension of LISP called

LAMINA [7]. It promotes a programming model in which an application is decomposed

into pipelines of asynchronously communicating objects that execute data-driven, run-to-

completion tasks in response to messages. LAMINA is targeted to an ensemble machine [22]

consisting of several hundred independent processor-memory pairs communicating via a low-

latency network. Our work was done in the context of a simulation of such a machine [8],
developed using an instrumented architectural simulator [9].

The rest of the paper is organized as follows. The next section introduces and character-
izes the ELINT problem. Section 3 describes the LAMINA object-oriented programming
model. Section 4 elaborates on the machine model that we used for our work, focussing
on its support for LAMINA. Section 5 considers the mapping from the problem domain
to the model by discussing the design of ELINT. We use the discussion to illustrate var-
ious techniques for organizing LAMINA applications to enhance performance. Section 6
describes our experiments to quantify the performance of ELINT. We show that the sys-
tem approaches the limits imposed by task granularity and message handling costs in the
absence of contention for processing resources, and we study the effects of load imbalance.
Finally, section 7 offers some conclusions.

2 The ELINT Problem

ELINT correlates the radar emissions that are passively observed by multiple, mobile detec-
tion sites into the individual radar emitters producing those emissions. It tracks the emitters
and then groups them into clusters that are tracking together. Finally, it hypothesizes the
types and number of platforms (aircraft) in the clusters and infers their activity.

The inputs to ELINT are time-ordered streams of preprocessed obsertations from the
detection sites. Each observation contains an indication of the current data timeslice, an
identifier for the detected radar emitter, and information regarding its current signal char-
acteristics such as quality, operating mode and line of bearing. The outputs of ELINT
are real-time reports on the tracks, constituent platforms. and activities of the clusters in
the monitored airspace. These reports may be used, for example, to maintain a "situation
board" describing the status of the airspace.

Characterization of the Problem

ELINT exhibits a number of characteristics that are of interest when considering ways of
organizing it as a parallel system.

* The system processes continuous, errorful, real-time input data.
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" The input data describes relatively independent and persistent activities. Aircraft are

independent entities (radar emitters somewhat less so), and they tend to be detected

for long intervals, relative to the data period.*

" The overall problem has an irregular. dynamic and data-dependent structure. Aircraft

come and go over time, and their numbers, types, movements and intentions vary.

" Problem solution proceeds largely by "abstracting" the input data. Detected emis-
sions are correlated into radar emitters that are further tracked and consolidated into
aircraft.

This suggests that any parallel decomposition scheme would do well to exploit the poten-
tially large amount of data parallelism inherent in the problem as multiple, loosely-coupled
activities are monitored. Pipelining is also indicated in the data-driven abstraction process.
Lastly, the persistence of activities makes an object-oriented representation attractive be-
cause it localizes the data-driven state changes, generates concurrent processes (i.e., objects)
only as needed, and allows the cost of establishing a concurrent process to be amortized
over the lifetime of the activity it models.

In the next section, we discuss an object-oriented programming model that evolved to
efficiently realize these ideas.

3 The LAMINA Object Model

The LAMINA object programing model is founded on the notion of asynchronously
commuricating objects. An object, as used here, is a collection of variables-its state
variables--manipulated by (and only by) a set of procedures-the methods associated with
that object. Objects may be defined within a compiled class inheritance network; the
current implementation uses the inheritance facilities of Flavors [25] (see [7] for details).

Objects communicate via streams [7], that are a generalization of futures [12,14], which
represent the promise for a value. Unlike futures, which represent single values, streams
represent sequences of values. The information sent to a stream over time builds the se-
quence associated with it. A consumer accesses the sequence by removing individual items
from the front of the stream.

Each object has associated with it a distinguished stream that serves as its task stream.
The information placed on this stream specifies tasks for the object; each unit of information
is called a message. A message names a method to execute and includes the parameter
values for the execution. A task that sends a message neither waits for the requested task
to be performed, nor for an acknowledgement of the receipt of the message. Communication
between objects is thus completely asynchronous.

4-340



LAM~IAObec
Task stream

(methods)

LL 2--: # I
State variables iemporary variables

(indefinite extent) (dynamic extent)

Figure 1: Message passing model

Most parameters included in a message are passed by copying; only streams and global-

ly-shared static constants (e.g., keyword symbols) are passed by reference. A sender may

provide parameter values that are arbitrarily structured graphs composed of lists and ar-

rays, and they are isomorphically reproduced at the receiving stream. This necessitates

the encoding and decoding of messages at the sender and receiver, respectively, and the

mechanism through Which this is efficiently accomplished is discussed in section 4.

3.1 Computational Flow

As illustrated in figure 1, the messages arriving on an object's task stream specify tasks to

be performed by that object. Every object has a dispatch process associated with it which
removes and executes each message on its task stream in turn. Tasks usually mutate the
state variables of the object and generate new messages. They have exclusive access to their
environment (i.e., state and temporary variables) during execution.

Tasks are data driven in that they are started only when all the needed information is
available. Typically, a single message, in conjunction with the object's state variables, con-
tains all the relevant information for a task. LAMINA also has mechanisms for scheduling
tasks upon multiple message arrivals [7].

Tasks are generally intended to be accomplished as the stages of pipelines that organize
the work performed by the objects of the application. In order not to block the pipeline, a
task, once started, is run to completion.

3.2 Providing Atomicity

.Although LAMINA provides the programmer with a run-to-completion model, there may
be system reasons for preempting a task, for example, to handle a debug trap or because
the task's run quantum has expired. When this occurs, the object does not execute any
other tasks until the preemption is resolved. This prevents other tasks on that object from
gaining access to the environment of the suspended task. However, since othier objects may
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execute tasks during this time, true atomicity can only be enforced if no state is shared

between environments. The mechanism by which objects communicate ensures this.
LAMINA objects can never share state because they only communicate by exchanging

messages containing independent copies of local structures. Furthermore, the state variables
of an object are only visible to its own methods and are therefore only accessible within a
private task. Thus the atomicity of operations on an object is preserved even in the presence
of preemptions.

3.3 Scheduling

The order of messages on an object's task stream dictates the order in which its tasks
are scheduled. Task streams may be specialized to override their default FIFO behavior,
and, ins ad, to impose either prioritization or sequencing on messages, and therefore task
activations.

Prioritized, or ordered, task streams merge arriving messages with those already on the
stream according to the numeric order keys included in the messages. Thus, the highest
priority pending task is scheduled first. Sequenced task streams additionally restrict message
removals (and, hence, task activations) according to their order keys, deferring out-of-order
messages until after the tasks corresponding to the intervening messages in the sequence
have been executed. In both cases, scheduling is programmer-specified and cooperative
because the order keys must be supplied by the tasks originating the messages.

3.4 Continuations

A LAMINA message specifies a transfer of control to the named method in the destination
object along with data relevant to continuing the computation at that point. It may thus
be usefully viewed as specifying a continuation [23] for the task that originates the message.

A LAMINA continuation is most often determined and invoked explicitly. The contin-
uation is determined either via computation within the originating task (using the contents
of the state variables of the object) or by virtue of being passed in as a client parameter.
In either case, its invocation is visible within the method code, as a message with the ap-
propriate selector (and, perhaps, yet another client) that is explicitly sent to the chosen
object.

When an explicit continuation is not convenient (e.g., in performing a remote function
call) an implicit, anonymous continuation can be used to capture the code and environment
needed to later finish the local computation. LAMINA forms the continuation by copying
any required bindings that are on the stack into a closure [24], which is deferred until further
information (e.g., the return value) is available.

An implicit continuation is not part of the original task's atomic execution; the task
and its continuation are independently atomic. The original task is first completed and
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its continuation is run some time later, when its requirements for additional information

have been met. In the meantime other tasks are executed by the object, keeping the

pipeline flowing. Since the continuation shares its spawning task's execution environment,
its environment may be altered by other tasks on the same object while it awaits execution.

The programmer must ensure that invariants are reestablished by the completion of each

task and continuation.

3.5 Granularity and Storage Considerations

The internal state of a LAMINA object (contained in its state variables) is expected to
occupy on the order of tens to hundreds of bytes, and task execution is expected to require
on the order of hundreds to thousands of machine cycles. This perspective on granularity
is irnm)ortant when considering means of supporting the LAMINA object model.

For example, if we assume that the support layer includes a virtual.memory system.
then high-performance, physically-addressed caches imply a page size of a few kilobytes. If
we further assume a page-protection-based stack-limit mechanism, then by maintaining a

stack for each object we pay a factor of a hundred or so in the (physical) space overhead
associated with task execution.

Since LAMINA tasks and their implicit continuations normally run to completion, their
binding and control stacks are non-empty only during.execution. Since task preemption is
an exceptional condition, stack storage space is generally reuseable among all the tasks on
a processor. This allows the underlying system to manage relatively fine-grained objects
without foregoing efficient virtual memory and cache mechanisms.

3.6 Model Summary

In summary, LAMINA encourages programs to be decomposed into data-driven, run-to-
completion tasks that are executed by objects organized as pipelines. Objects execute the
tasks in response to messages arriving on their task streams, using their associated dispatch
process. Only streams and universally-shared, static constants are passed by reference in
messages; all other data, including structures, are passed by copying. Each task atomically
manipulates the message contents and the state of the object before asynchronously send-
ing new messages. Messages specify continuations, most often explicitly determined and
invoked, and they usually activate tasks in objects further down the pipeline.

The LAMINA object model is similar to ACTORS [1] in that message arrival triggers
computation and message arrival order is non-deterministic. However, it departs from
ACTORS in a number of ways, primarily by trading off flexibility for efficiency.

9 Not everything is an object. Predefined data types such as numbers, symbols, arrays
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and cons cells exist as primitives, and operations on them do not entail message-pass-
ing. Although structures are passed by copying, they are locally mutable.

*'Streams are first-class entities independent of objects. Objects may establish com-
munications over streams other than their task streams. Streams may also be shared
between objects as described in [7].

9 Mutation is explicit. Unlike actors, LAMINA objects do not deal with state changes
by specifying a replacement [1] actor for themselves, but rather explicitly manipulate
their own state variables through assignment.

In the next section, we consider an architecture to support the LAMINA programming
model.

4 The (Simulated) Message-Passing Machine

LAMINA is targeted to an ensemble machine consisting of hundreds to thousands of inde-
pendent processing sites that are interconnected by a direct communications network. The
network supports a low-latency, cut-through, point-to-point routing protocol that includes
a multicast facility (3].

As shown in figure 2, each site consists of

e an evaluator, a general-purpose processor that is responsible for executing application
code;

e an operator, a dedicated co-processor that is responsible for creating and accepting
messages, and for scheduling evaluator processes;

* some buffers, which interface the operator to the communications facility;

a some memory, which is shared by the evaluator, the operator and the buffers at the
site; and,

e some network ports and a dedicated router, which together form the communications
hardware of the site.

These components are described in more detail below.

4.1 Communications Support

The processing sites are typically embedded in a low-dimensional network, such as a mesh
or torus, with routing decisions independently made at each site.
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Figure 2: A processing site

The communications hardware at each site implements a dynamic, cut-through routing
algorithm (3]. Cut-through routing means that a router makes a routing decision as soon
as the first few bytes of a packet have been received [13], rather than after the entire
packet has been buffered as in store-and-forward schemes. The decision is dynamic in our
system because it is based on the ava.ilability of output ports :tt that time, thus adapting
to prevailing network load conditions. In the exceptional case that no suitable port is
available due to congestion, the router instead initiates a connection to the local buffer
and the message is stored in its entirety in local memory for later retransmission by the
operator.

With cut-through routing, the latency of a message is proportional to the sum of its
length and the distance it covers in the network [5], as opposed to being proportional to the
product of the two as with store-and-forward schemes. This results in a significant reduction
in latency, making finer-grain LAMINA tasks cost-effective. It also makes locality'less of
an issue in object allocation.

Finally, the router provides direct support for multicast packets (3], allowing low-latency
transmission of the same packet to multiple destinations while using common channels as
far as possible. 1 This is a useful feature for LAMINA applications because it provides an
efficient mechanism for messages that are multicast to replicated objects.

'We have recently found that the multicast scheme that was used for our experiments can degrade
unacceptably in the presence of even moderate load, in (4), we present an alternative approach with better
load characteristics. Our experimental parameters for the work reported in this paper did not stress the
multicast facility sufficiently for its effects to be significant.
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4.2 Message-Handling Support

The operator provides the message handling facilities at a processing site. It is primarily

responsible for accepting and generating messages in the form of packets. It also enables

and schedules processes for execution in the evaluator.

As described earlier, LAMINA messages may contain values with arbitrary internal
structure. These are to be passed by copying, and must be encoded before transmission.
This function is performed by the operator. When the process running in the evaluator
needs to transmit a message, it passes the operator a pointer to the data to be transmitted.
The operator recursively traverses the data, linearizing it and relativizing internal pointers
to produce a coded, relocatable copy. It forms this into a packet and transfers it to the
network buffer for transmission to the remote site.

When the packet arrives at its destination, the operator at that site performs the reverse
mapping, decoding, offsetting the relativized pointers to produce an isomorphic copy of the
original data in local memory, within the address space of the receiving object.

The evaluator at the transmitting site is free to continue processing once it has passed
the message data pointer to the operator. However, it must not mutate the data until the
encoding is completed. Similarly, the evaluator at the destination site is not involved in
message reception. The operator places the message on the targeted stream, and, if it is for
a dormant LAMINA object, enables the appropriate dispatch process and passes it to the
evaluator for execution.

4.3 Simulation Model and Parameters

We have used the SIMPLE architectural simulation system [9] to develop our machine

model, called CARE [8]. Besides allowing one to flexibly specify models at any level
of detail, SIMPLE provides extensive instrumentation facilities to visualize and study the
performance of both the modelled architecture and the applications driving it. The feedback
provided by the instrumentation was invaluable in refining the design of ELINT. SIMPLE
currently runs on the Texas Instruments Explorer and Symbolics 8600 families of machines;
we are engaged in porting it to Common Lisp [24] and the X window system (20].

CARE simulates the communications subsystem at approximately the register-trans-
fer level. The operator is functionally simulated and the evaluator uses the base machine
to actually execute and time the application code. Most components are parameterized,
allowing a wide range of architectures to be modelled with little effort.

For the experiment reported here, the base system cycle was set at 100ns, so the eval-
uator was assumed to deliver upto 10 %IIPS performance.2 Process switching was assumed

2 Depending on the expected ratio between peak and average pipeline occupancy, this might realistically
represent approximately 7 MIPS delivered instruction execution rate.
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Figure 3: ELINT organization, with average task and message granularity

to take 150 cycles in each direction. Message creation and acceptance cost 100 cycles to
interrupt the operator and setup internal registers and an additional 16 cycles per 32-bit
word of data for encoding or decoding, Network channels were I bits wide, giving a channel
bandwidth of 40 Mb/s. Finally, the system was configured as a tors with eight bidirectional
connections at each site.

5 Application Design

ELINT's basic processing flow is data-driven. Every data timeslice, new observations are
input into the system and either correlated with known emitters or used to create new
emitters. The data contained in the observation s are used to update the status and course
history of the emitters. Any unclustered emidtters with sufficient track data are matched
against known clusters, and, failing that, formed into new clusters. Finally, data from the
emitters are used to update the track, activity and platform history of their clusters.

5.1 Pipeline Organization

ELINT is naturally organized as parallel, data-driven object pipelines in LA'MINA, as
shown in figure 3.

Observation readers form the input interface of the system to the data collection sites.
They read in time-tagged observation structures , representing observed emissions, and pass

3Observations are stored in a data file, called a scenario, in our simulations.
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these on to the emitter observations for the identified emitters. If the emission represents a

new emitter they instead pass it to the emitter manager responsible, which creates a new

one (if necessary) and so informs the readers.
Emitter observations buffer the observations until the end of the current data timeslice is

detected. Thereafter, they compute confidence and status information about the represented
emitter and form an emitter-report structure that they pass down the pipeline. Successive
pipeline stages compute and attach track (i.e., fix and heading) information to this report.

Emitter status objects link their respective emitters to an appropriate cluster, and, once
clustered, propagate their reports to the cluster. Each group of cluster status objects imple-
ments a distributed database of the track and activity history of a cluster; this is used both
to report on the cluster periodically and to match against the tracks of new emitters that
attempt to cluster. Finally, whenever an emitter is added to or removed from a cluster,
the associated cluster platform object adjusts its hypothesis on the platforms forming the
cluster.

5.2 Replication

Replication is a useful means of relieving congestion. When feasible, it allows for wider
pipelines and increased throughput. However, it is viable oily to the extent that the
replicated objects have no dependencies between them4 other% ise, duplicated data must be
kept consistent.

Early experience indicated that the observation readers were obvious candidates for repli-
cation, since the rest of the system was often data starved. Emitter managers are also
replicated to scale with the size of the system; a simple modulo operation on an emitter's
(integer) identifier is used to break dependencies while maintaining creation consistency.

Sometimes the benefits of replication outweigh the need to maintain consistency at all
times, especially if the system has the capacity to detect and correct the inconsistency as
part of its regular problem solving activity. This is the case with the cluster status objects
which form the database of a cluster's track and activity history.

The database is partitioned by data time to ameliorate the bottleneck that results when
multiple constituent emitters supply reports to a cluster every timeslice. Consequently,
cluster status objects detect "emitter splits" (i.e., emitters that were part of the cluster but
whose tracks have now diverged from that of the cluster) in isolation. This can lead to
inconsistent decisions as to the particular emitter that is split off, as a result of different
message arrival orders at the individual objects (since the first arrival determines the inher-
ited track of the cluster for that data time). However, at worst, too many emitters are split
off and the system recovers because these emitters retry clustering with all extant clusters.
The benefit of replication here is two-fold: besides reducing congestion at the cluster, the
grain size of the match performed at each object during clustering is also reduced.
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5.3 Clustering

An emitter that has been tracked for a sufficient period of time must either match an

existing cluster or create a new one. This computation is organized as a distributed loop as
shown in figure 4. During each iteration of the loop, the emitter attempts to match against

those clusters that have been created since the last iteration, and the loop terminates when
it successfully matches an existing cluster or causes a new one to be created. The process
is described in more detail below.

An emitter status object that needs to cluster sends the cluster manager a match-request
structure containing the recent track history of the emitter and a counter of the number of
clusters that it has already (unsuccessfully) matched against. The latter maintains a private
list of all extant clusters; it multicasts the request to the cluster timers of those clusters that
have not been matched against, first incrementing the counter to reflect the total number
of clusters. If, however, the counter shows that matches against all clusters have failed, it
creates and initializes a new cluster for the emitter, for which the match always succeeds.

A cluster timer defers the request until it is coincident in time, a decision that is based
upon the reports supplied by its constituent emitters. Thereupon it multicasts the request
to its cluster status objects, specifying a selected cluster matcher as the intermediate client
of the match to diffuse the fanin load. The cluster matcher collects the partial results of
the match and then sends a summary of the results to the original emitter status client.
The latter awaits either a successful reply from one cluster or unsuccessful replies from all
the clusters that it attempted to match against during this iteration, and thus determines
whether to terminate or continue the distributed loop.
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The multi-level fanout and fanin trees allow for significant throughput in the match

process. An emitter can concurrently match against multiple clusters, and each cluster can

concurrently service multiple matches is well as perform each individual match in parallel.

The major potentiaJ bottleneck in this scheme is the cluster manager; like Brown et aL. in [2],
we have not foun . it to be so in practice.

5.4 Time Consistency

Many of ELINT's inferences rely on time-ordered sequences of data. For example, one way
the system computes an emitter's heading is by using its fixes from two consecutive times-
lices. We saw earlier that LAMINA does not guarantee that message order is preserved.
As a result, ELINT must maintain this order when necessary.

This is done by using sequenced or prioritized task streams in conjunction with t;mes-
tamped messages. The "natural" timestamps are the data timeslice numbers for which
the messages are relevant. An observation reader detects the token signifying the end of a
timeslice in the input data and propagates it to all the emitter managers. These, in turn,
pass the information on to their respective emitter observations, thus triggering the flow of
computation through the system for that timeslice.

A sequenced stream can guarantee that messages will be processed in the prescribed
order. However, its use is only viable when its producers are a priori known, because of the
obvious difficulty in otherwise generating the order keys in sequence. Thus, for example,
the sequenced approach works for the emitter heading objects because they only receive
messages from their upstream emitter fixes.

In many cases, however, the dynamic communication patterns between objects, such
as between emitters and clusters, make other techniques necessary. One approach is to
approximate sequenced streams by using a single source to provide the sequence keys to a
sequenced stream while allowing the other sources to view the stream as simply prioritized.
This is what is done with the emitter observation objects: they receive observations from some
subset of the many readers every timeslice but their sequencing information is provided by
time messages from their respective managers. 4 Other approaches are to use prioritized task
streams or to explicitly defer out-of-order messages in "shadow" task queues maintained by
the application code. Although none of these techniques can generally guarantee correct
ordering as strictly-sequenced streams can, our experience is that they work well in ELINT,
primarily because the producers of a stream are often approximately synchronized and they
each usually generate messages in time order.

'Note that this scheme also generally preserves data consistency within a timeslice because, once the
time message is received, all the relevant data are bundled up into a single timestamped emitter-report and
started down the pipeline.
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5.5 Object Allocation

ELINT uses only static allocation of objects to processing sites. Multiple allocators, the

managers, independently make the allocation decisions at object creation-ime. The exper-

iments reported here used no dynamic migration of objects to balance load.?

Random allocation performed we!l when the number of objects was far greater than

the number of processing sites. A better scheme partitioned the processing sites among
the object classes during initialization and allocated objects randomly ithin each block at

runtime. The partition was based on the measured relative actiitv of the classes, using
information provided by the underlying instrumentation system (see section 6.2). This
strategy reserved resources for the expected critical path and reduced both the load variance
over the processing grid as well as the interference between pipeline stages.

5.6 Summary and Discussion

The fundamental programming model of LAMINA appears well-suited to the ELINT
domain. Object pipelines executing data-driven run-to-completion tasks match its basic
real-time update cycle well. Replication and partitioning can be used in balancing pipelines,
although they may introduce consistency problems. Often. the inconsistencies are only
temporary and localized and the system can resolve them as part of its normal duties.
Partitioning and pipelining can also be dynamically, combined to form trees for highly
concurrent many-to-many database matches.

Although inter-object data consistency problems generally do not arise because values

cannot be shared in LAMINA. a run-to-completion model sometimes raises intra-object
(i.e.. inter-task) consistency issues. This is particularly true when a chain of explicit con-
tinuations feeds back on itself.6 for example, in ELINT's distributed match loop. Our
solutiops typically entail explicitly keeping task-specific data (e.g., flags) as required within
the object and adding code to avoid or. failing that. resolve problems in each potentially
interacting method. Thus, for example, if a represented emitter is found to have incorrect
track data (due to observation errors) while it is in the process of fusion, the emitter sta-
tus method that handles match replies from the clusters is responsible for invalidating the
(incorrect) successful matches that may result.

Another area in which consistency is important is time. Sequenced task streams can
be used to guarantee correct control of tasks that rely on time-ordered sequences of data,
but they cannot be used in the presence of dynamic producer-consumer relationships. In
these cases, prioritized task streams or explicit message deferrals can be effective. All
these approaches work reasonably well in ELINT because its pipeline organization and its

'Dynamic migration is the subject of current research within the AAP (1 I].
6The implicit continuations described in section 3.4 are a degenerate case of this.
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periodic update cycles keep the producers of a stream approximately synchronized.

ELINT was extensively refined as we gained insights into its behavior through the

feedback provided by SIMPLE's instrumentation. This also helped in shaping its class-

based allocation scheme.
In the next section, we discuss our experiments to quantify the utility of the concurrent

svstem.

6 Performance Evaluation

We evaluated ELINT with respect to correctness and timeliness. We used correctness to
assess the quality of ELINT's problem-solving and timeliness to determine its performance
in terms of speedup. Our experiments and results are described below.

6.1 Correctness: Solution Quality

We evaluated correctness by driving ELINT with a number of scenarios that exercised
all of its decision-making capabilities, including handling input data errors. In each case,
we compared the outputs generated by the parallel ELINT implementation with those
genera ted by a serial (and. by definition, correct) implementation. An analysis program
used these outputs to assign grades in various categories as shown in table 1. The term
-correct" used therein implies that the grading penalized inaccurate or missed reports of
the relevant events.

Results

Once debugged, ELINT performed well vith respect to correctness over a range of scenarios
and data rates. The system always correctly identified important events such as emitter
detection, tracking and fusion (clustering). However, at very high data rates, fusion latencies
sometimes affected correctness. The system missed a few cluster reports because cluster
creation was delayed until matches were known to have failed, and it also reported threats
for as-yet unclustered emitters rather than via activity reports for their dusters. Note,
however, that these lapses were always short-lived, since the fusion latencies were never
more than a small number of timeslices.

The major reason for ELINT's good solution quality is its maintenance of creation
and time consistency [2i. All creation requests are funnelled through "managers". which
ensures that the objects in the application correctly reflect the real world that they are
modelling. Time consistency is maintained as described in section 5.4, by controlling the
execution order of time-dependent tasks via timestamped messages directed to sequenced
and prioritized task streams.
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Measure Comment

Recognized emitters Emitters correctly recognized.

Obserration ID errors Correctly reported observations for distinct emitters
that were assigned the same ID by different detection
sites.

Obserration inconsistencies Correctly reported observations for the same emitter
.hat were assigned inconsistent emitter types by dif-
ferent detection sites.

Emitter confidences Emitter confidences correctly reported-

Emitterfires Emitter fixes correctly reported.

Emitter headings Emitter headings correctly reported.
Emitter threats Emitter threats correctly reported.
Clustered emitters Emitters correctly fused into some cluster.
Co-clustered emitters Emitters correctly fused into the same cluster.
Not co-clustered emitters Emitters correctlv fused into distinct clusters.
Timely clustering Clusters formed at correct time.
Cluster platforms Correct platform hypotheses for clusters.
Cluster activities Cluster activities correctly reported.

Table 1: ELINT correctness measures

6.2 Timeliness: Sustainable Data Rate

We used timeliness to measure the quantitative performance of ELINT. As with the solution
quality analysis described in the previous section, we used the technique of analyzing the
outputs of ELINT executions.

Every report that is output by ELINT (e.g., an emitter fix) is pertinent to a particular
data timeslice, since it is based on new observations that were (or were not) provided for
that timeslice. Each timeslice represents one "tick" of an external clock (corresponding to
the scan time of the detection sites) and thus also signifies the real time at which the data
for that cycle was available to the system. Thus we defined the latency of a report to be
the elapsed time from the start of the relevant timeslice to the time that the report was
generated by the system.

Averaging the latencies for certain classes of reports (e.g., emitter fixes) on a timeslice-
by-timeslice basis gave us a means of testing whether the system could process the data at
the rate at which it was provided-average latencies that increased over time meant that
it could not. Thus, the sustainobie data rate for a given scenario and processor population
was the fastest rate (i.e.. smallest timeslice duration) at which data could be supplied to
the system such that the latencies of these key inferences did not increase over time.

The inferences we chose to look at were those which were indicative of the "normal"

4-353



20 am Ram 4 ekidenS

100

90

s0

a

10 70

50 C

40
.220 2

10

0
0 51 0 1o 15o 2001 250

PoPulion

Figure .5: Speedup and Data Rate

processing duties of the system. namely, emitter and duster track computations. These
latencies were also a good choice from a pragmatic standpoint because they were sufficiently
frequent for trends to be analysed programmaticaily without the problems induced by sparse
data. We also used scenarios that contained a stable population of emitters and clusters so
as to minimize the variations in observed latencies that could otherwise be caused by the
sudden variations in system load.

Results

We measured speedup for a particular scenario by comparing the sustainable data rate for
various processor populations with that for a single processor. The scenario reported upon
here lasted forty timeslices and consisted of twenty emitters that formed four clusters. The
results are shown in figure 5. Note that in all the cases, the good correctness levels reported
in the previous section were attained.

With one object per site, ELINT could sustain a data rate of 400 microseconds per
timeslice, a speedup of eighty over the serial case. The grain sizes of ELINT tasks and
messages that are shown in figure 3 provide us with the explanation for this.

In particular, emitter observations have an average task granularity of 100 microseconds,
and they each receive and process three messages per timeslice before initiat,,g further
pipeline activity. These are two update messages providing an observation from each of the
detection sites in the scenario and a report message signifying the end of the current times-
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lice. This creates a "hard" performance limit of 300-400 microseconds per data timeslice,
which is approached in this case. Note that the limit is the maximum throughput of a
single pipeline; it is independent of the-width of the scenario, i.e., the number of pipelines.
Conversely, speedup is proportional to the number of pipelines that can operate in parallel,
which is twentv in this case. The eighty-fold overall gain is realized because each individual
pipeline gives an additional factor of four.

As the load on the sites increases with smaller processor populations the contention for
site resources degrades performance. even with balanced loads, because pipelines must now
run slower. A poor load balance additionally reduces performance, because pipelines can
only go as fast as their slowest stage-the sustainable data rate of the system is now limited
by the throughput of the worst loaded site.

Load variance across the sites accounts for sub-unitary speedup 7 . Non-ideal load distri-
butions occur as a consequence of any realistic allocation scheme. Independent allocators,
necessary to alleviate bottlenecks. cannot easily share a consistent view of the global load
because of the distributed nature of CARE. Thus, for example, in the 64 site case, 6 man-
agers used the class-based scheme to allocate 80 dynamict emitter objects over a pool of
25 sites.8 The best distribution here would have been one where 3-4 objects resided on
each site; in actuality, two sites hosted 5 objects each, which limited the throughput of the
system to 1.3 milliseconds per data timeslice. However, as noted earlier, a purely random
allocation scheme resulted in even more inter-site variance than this.

Secondary factors affecting performance are:

a Dynamic object creation latencies are fixed costs (on, the order of milliseconds) that
become more dominant with higher data rates. Work that is deferred until creation is
accomplished costs relatively more in terms of latency. Performance suffers since the
system spends more of its time manaing backed-up queues and playing "catch-up".

a The relative sizes of the processing pools allocated to various classes are set without
prior knowledge of the scenario. The partition attempts to cover a range of possible
scenarios and is thus never optimal with respect to any particular one.

* Similarly, the degree of replication of various objects is not scenario-specific, but
is rather precomputed based on expectations of "typical" situations and available'
processing resources. Replicas and their processing sites may be under- or over-utilized
for any given scenario.

'Unitary speedup is linear speedup with a slope of 1.
8Our equivalence of "load" with number of objects at a site is rather idealized-all objects need not have

the same processing requirements. fo'terer. our problem decomposition and the persistent objects typical
of ELINT make the approximation useful here.
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Finally, ELINT's pipeline stages are only approximately balanced. As shown in fig-

ure 3, task granularities range from 100-300 microseconds (with varying frequencies)

and messages are typically 20-30 words in length. Also, secondary message paths

feed back into the pipes, for example, during fusion. Both these factors reduce overall

efficiency.

7 Conclusions

We have described LAMINA, a concurrent object-oriented programming language, and
the design and simulated performance of ELINT, a soft real-time report integration system
written in this language. We offer the following conclusions from our experiments.

* LAMINA's programming model of objects organized as pipelines is well-suited to the
soft real-time domain, because it naturally exploits the data and pipeline parallelism
inherent in the problem.

e A value-passing model in which asynchronous messages-trigger data-driven, run-to-
completion tasks can form a viable alternative to a call-return discipline. We have
quantified the performance that results from keeping pipelines flowing, and we have
shown how to preserve program solution quality within this model by keeping data
consistent and controlling order-critical tasks.

e We have demonstrated that it is possible to obtain significant speedups for soft real-
time systems within the above model. Our implementation of ELINT in LAMINA
achieved a speedup of 80 in the absence of contention for processing resources, thus
approaching the limits imposed by task and message-handling granularities. Since
speedup depends on the number of pipelines that can operate in parallel, twenty in
our experiments, we can expect performance to scale with wider scenarios that contain
more aircraft.

* Load balance is an important factor in the performance of concurrent applications.
This is especially true in real-time systems, where the focus is on throughput-an
overloaded site limits the throughput of the entire system. Our class-based object
allocation scheme performed better than random allocation, but still limited ELINT
to a speedup of 53 with 2.56 processing sites. We expect that dynamic load balancing
will be valuable in overcoming this loss in efficiency.

* System instrumentation is a critical tool in the development of concurrent programs.
We found the feedback provided by the instrumentation in our simulator essential in
refining the design of ELINT to break bottlenecks, balance pipelines, and evaluate
load balancing schemes.
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* Finally, we have described an architecture for a high-performance implementation of

streams, which supports the low-latency delivery of data values to where they are

needed and the efficient scheduling of consumers of the values. We believe that a

cut-through network using adaptive routing forms a cornerstone of this support.
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Abstract
Simulation of multiprocessor systems at an architectural level can offer an effective

way to study critical design choices if: (1) the performance of the simulator is adequate
to examine designs executing significant code bodies, rather than just toy problems or
small application fragments, (2) the details of the simulation include the critical details
of the design, (3) the view of system operation presented by the simulator instrumenta-
tion leads to useful insights on the problems with the design and with the applications
driving it, and (4) the simulation system is flexible enough to .ilow one to easily ask
unplanned questions that require making changes either in t- design or in its mea-
surement. This article describes SIMPLE/CARE, an instrumented simulation system for
studying multiprocessor architectures, that was designed to meet these goals.

1 Introduction and Overview

Simulation systems are often developed in the context of a particular problem. To a degree,
this is true for SIMPLE, a general-purpose modelling system, and CARE, the multiprocessor
architecture simulator that runs on SIMPLE.' The problem motivating the development
of SIMPLE/CARE was the performance study of multiprocessor systems composed of many
hundreds of elements executing a set of signal interpretation applications that were to be
implemented using several alternative programming formalisms (9].

This problem offered a set of constraints that governed the design of SIMPLE/CARE.

This work was supported by DARPA Contract F30602-85-C-0012, by NASA Ames Contract NCC 2-
220-SI, by Boeing Contract W266875, and by Digital Equipment Corporation.

'S1MPLE is a descendent of the PALLADIO VLSI design system (3], that has been optimized for the subset
of PALLADIO's capabilities relevant to hierarchical design capture and simulation. SIMPLE was originally
developed in Zetalisp (14]; it currently uses Common Lisp (13] with Flavors (15]. A version of SMPLE/CARE
that runs on Texas Instruments Explorer workstations is currently available; a forthcoming release will use
the X window system (12]. For more information, contact saraiyasusex-ain.stanford.edu.

4-361



The kinds of multiprocessor system components that would be needed and the ways in

which these would be composed into complete systems was initially difficult to bound.

This meant that component models would be modified and elaborated over time as

design concepts evolved.

It was evident that instrumentation requirements were similarly fluid. Results from
early simulation runs were likely to identify alternative aspects of system operation
that should have been monitored, but were not. Further, since the simulator was to be
used by system architects and applications programmers alike, their individual needs
for detail in the view of system operation had to be satisfied. It was thus important
that instrumentation could be varied both rapidlyand independently of the system
models.

The applications represented significant bodies of code, so simulation run times had
to be minimized. This meant that some simplifications in system models were indi-
cated. On the other hand, the interactions of multiprocessor system elements were the
least understood aspect of system operation. Thus, it was desirable that the system
models capture the details of these interactions; otherwise, simulation results would
be suspect.

These constraints yielded the primary requirements for -I.IPLE and CARE. For the
former, it was that SIMPLE should offer significant flexibility wv'h regard to the specification
of system models and their instrumentation, while maintaining efficiency in simulating
these models. For the latter, it was that, in order to accomplish runs with acceptable
elapsed times, CARE should particularly focus on the details of a multiprocessor system's
communications and scheduling support facilities: aspects of system execution critical to
multiprocessor (as opposed to uniprocessor) operation.

The remainder of this section outlines how the organizations of SIMPLE and CARE con-
tribute towards meeting these goals.

1.1 The Organization of SIMPLE

SIMPLE provides flexibility in specifying system models by partitioning issues of system
functionality and system instrumentation into separate, largely independent domains of
consideration. In both areas, SIMPLE further partitions concerns as shown in figure . and
described below.

System Function

The principal abstraction supported by SIMPLE to specify system models is the component.
A component represents a fragment of system functionality by encapsulating some private
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Figure 1: Simulator Organization

state along with the procedures that define how that state changes over timb. A component
is therefore naturally represented by an object. 2 The component abstraction partitions
the design along well defined boundaries since, by and large, components interact only
through their defined ports. Connections between components terminate at such ports
so that, during a simulation run, assertions about the state of a port of one component
can be directly translated to assertions about the state of a connected port of some other
component.

System structure defines how components are combined to form a larger system. This
is specified incrementally, as definitions for each component type which describe the sub-
components (if any) a component of that type contains and how their ports are to be
interconnected. Optional definitions for geometric layout and routing allow the designer to

2in fact, much of SMIPLE/CARE'S flexibility and power derives from its implementation base of Fla-
vors, which provides a mature, powerful object-oriented programming system with extensive capabilities for
multiple inheritance and method combination. Flavors permits the evolutionary development of software
'libraries' for all aspects of the system design without sacrificing performance.
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view the structure graphically. These specifications are captured as procedures, allowing

efficient, parameterized and programmable structure generation [2]. A complete design is
'constructed' before a simulation run by the recursive generation of its parts, yielding a
hierarchical network of interconnected components.

Component behavior defines how the state of a component changes over time. Behavior
definitions are encapsulated as procedures relevant to each type of component, and can
thus be developed mostly in isolation, provided interfaces are maintained. Behavior code
is responsible for handling event--time-tagged state changes to a component's ports and
internal state variables during a simulation run-in order to generate the local state changes
'caused' as a consequence.

System Instrumentation

Every component automatically includes support for instrumentation because every com-
ponent inherits the basic functionality required for monitoring it and for maintaining its
organizational relationships with the instrumentation system. This allows instrumentation
to be introduced into the design non-intrusively, that is, without changing model function,
and incrementally, that is, as interesting aspects of a component's operation are identified.

SIMPLE factors system instrumentation into the details of data capture, data analysis,
and presentation. This allows for the flexible intermixing of darerent capabilities for each
of these concerns.

Component probe definitions specify what data should be captured for each compo-
nent type. There may be several probe types for a component type, each appropriate to
measuring a different aspect of the component's operation. Probes may make use of pre-
defined modules to accomplish certain types of calculations (for example, moving averages)
on captured data.

Panels bring together the data analysis and presentation aspects of SIMPLE's instru-
mentation system. They specify how the data supplied by probes is to be transformed
through analysis, and how the results are to be displayed. SIMPLE has a basic library of
presentations: class definitions which represent particular display styles such as histograms,
intensity maps and scrolling line plots. It also provides a library of procedures to accomplish
standard data analysis operations.

A panel is defined by customizing the appropriate presentation class with descriptions
affecting its graphical appearance, such as legends and color maps, along with interface
specifications: expressions using an augmented Lisp syntax to describe probe types, data
transforms, and displayed quantities. Defined panels may then be aggregated into an in-
strument, which associates a named type and a screen layout policy with the collection of
panels.

Instrumentition is 'attached' to a design before a simulation run by simply instantiating
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the appropriate instrument type with the design as a parameter. The instrument's panels

are created and their corresponding interface specifications are then compiled into data

structures and code that will accomplsh the panel analysis and tsforatm operatio

The required probes are also attached to components at that time. The end result is an

instrumented design that ties together instances of components, probes and panels for the

simulation run.

I. The Organization of CARE

At the base level, CARE provides a library of multiprocessor components suck as network
interfaces, busses, processors, mess "Pe coprocessors and memory controllers. These can be
composed into a number of standa.- system configurations, such as toroidal networks or
systems of hierarchical busses. Most components are parameterized, allowing variation in
performance characteristics such as cycle times and channel widths, as well as choices on
other aspects of system behavior, such as routing algorithms.

To satisfy the need for detail required in modelling multiprocessor system element in-
teractions, the definition of network components is fine enough to capture each of the many

operations that accomplish cut-through message routing [8] of a packet of data in-a torus
network. To satisfy the runtime requirements of simulating complete applications, the pro-
cessor models are coarse enough (and thereby fast enough) to ignore the details of simple
processor operations that affect system operation only through their timing. Instead, this
timing information is captured during the simulated execution of concurrent programs by
dynamically running purely sequential segments of application code on the underlying ma-
chine and measuring their execution time.

Coriurrent Programming Models

CARE defines parallel programming language extensions, collectively called LAMINA, for
object oriented, shared variable and functional programming models [6). The primitive
mechanisms that support these language models are encapsulated within component defini-
tions, but are decoupled from the underlying information flow control governing component
behavior.

Component flow control actions deal generically with gating information between lo-
cal ports and state variables, that is, with communicating information, independent of its
content. Language support actions, on the other hand, create and manipulate information
based solely upon its content; they play no part in communicating it betwten components.
This separation of functionality allows the study of alternative communication protocols
or topologies without modification to language interfaces and applications. Further, new
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language interfaces may be defined or existing ones changed without redefining the commu-
nications protocol used by the system components.

Instrumentation

CAIt supplies a library of probe, panel and instrument definitions corresponding to its
particular multiprocessor systems and programming models. For example, one cAiE system
architecture is a message-passing multicomputer that executes application programs using
the object-oriented LAMINA extensions [6]. An instrument for this system (see figure 14) has
probes which monitor the critical operations performed on messages both by application
data objects and by the resources of the underlying multiprocessor. These drive panels that
display loads and latencies at the architectural as well as application levels.

1.3 Using SIMPLE/CARE

The primary users of SIMPLE/CARE are system architects and application programmers. The
system architect develops multiprocessor component models and instrumentation through
a set of design time interactions with the simulation system. The application developer, in
turn, writes parallel code using the LAMINA language extension, ... higher level frameworks
derived from these [1, 10, 11). All the definitions-for models. .strumentation, languages,
and applications-are compiled and loaded into the Lisp en,-wronment. Incremental com-
pilation, supplied by the environment, allows changes in these definitions have immediate
effect, even during a simulation run, which is an important capability during debugging.

The user starts a simulation by first instantiating a design corresponding to the partic-
ular architectural model under study. The user then chooses a particular instrument and
attaches it to the generated design, so that the instrument panels appear on the workstation
screen. Another call then 'loads' the application program into the simulated multiprocessor
and gets it running, at which time the instrument panels begin to dynamically display the
chosen system performance measures. The user is free to interrupt the run both via the
keyboard or via breakpoints inserted into the application or model codes. Menu-driven
interactions allow variation of component model parameters as well as control of the instru-
mentation.

2 Building System Models

A system model or design is defined in sIMPLE by specifying its intended structure and be-
havior. As described earlier, this specification is organized around the components that form
the system. In this section, we discuss the means by which system models are formulated
in terms of components.
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2.1 Structure

A system structure consists of a hierarchically-organized collection of typed components,
as shown in figure 2. Defining such a system structure in SIMPLE involves defining each
type of component and describing its contribution to overall system structure in terms of
its subcomponents and their relationships.

. --- ---
L . -Meete .... .

Figure 2: Hierarchical Composition

Defining Component Types

A component's type determines its private structure, that is, the set of'attributes that
make up the component.. SIMPLE provides the def component macro to define a type (orclass) of component. 3 This includes specification of its inheritance, and of the named slots,
or instance variables, present in an instance of the class. Although slots may be used for
any purpose, they primarily represent the state variables that are required for generating
history-sensitive component behavior.

The code in figure 3 shows a fragment of the definition of a CARE operator componenttype. In this example, an operator is made to inherit from debug-history-mixin, thus
gaining functionality for keeping a history of events during behavior debugging. The Status
slot is a state variable that contains a symbolic representation of the run time state of thecomponent. The Pending-Operations slot contains a complex data structure (a queue)
that will be managed by the component during its operation.

'This macro ha. a straightforward translation to the underlying dofflavor [15] construct wi;ich definesa flavor. It also generates definitions for procedures to initialize and reset the slots of a component of this
flavor.
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(dofc poaet opUATOR (dobug-istO7y-Xi.Z)
((Status ; state variable

docuceatatioa "Cureat status: readylbusylservicia('
:iait aoz 'ready :resstfor 'ready)

(paadijI-operatica ; state variable
:docuntatioa -Data uovemaet operations requested"
:resetforu (nake-quoue)) ; fifo

Figure 3: Definition of a Component Type

Defining System Structure

System structure in SIMPLE is built up through the incremental combination of components.
Components can form a larger structure through composition and interconnection.

As shown in figure 2, at the base level are primitive components that have no defined
structure beyond their ports. An operator is an example of such a component. Composite

components, such as a site, additionally contain subcomponents as parts; parts may of

course be primitive or composite. Composite components may also have function beyond
what can be inferred strictly from their composition.

Composite components determine the interconnections between the ports of their in-

dividual subcomponents, and. further, the connections between their own ports and those

of their subcomponents. Connections thus establish pathways for information to propa-
gate between ports: b .n.h within and across hierarchical boundaries. Thus, the top-level

composite forms the system structure, or design, under study.
SIMPLE originally captured component structure graphically and interactively, through

the menu actions and mouse gestures supplied by a structural editor. Defined component

subsystems would then be placed in a 'library' for later reuse. It turned out, however,
that this approach was sometimes inconvenient. Furthermore, a database distinct from the

underlying Lisp type database had to be maintained. Therefore, SIMPLE now represents
structural information procedurally. A procedural representation permits efficient, flexi-

ble, and parameterized structure generation. It is particularly useful for automating the

construction of the largely replicated system structures that characterize multiprocessor
architectures.

A component's structure is specified as a method (that is, a procedure relevant to the
type of the component) that is executed by SIM P LE's component instantiation protocol. The

method uses built-in SIMPLE functions that create ports, subcomponents and connections
to generate a component's structure. SIMPLE provides additional functions that allow the
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description of the structural geometry of the component. In effect, then, these functions

form the primitives that allow the construction (and querying) of a database of compo-

nent objects. The component instantiation protocol accomplishes the creation of a system
structure in a, depth-first fashion. Components construct subcomponents, which in turn
construct their subcomponents, and so on until primitive leaf components are created.

To illustrate this approach, consider the code in figure 4 that might define the structure
of the processing-elment shown in figure 2. In this example, ev, op, ibuf, and obuf are
variables local to the structure definition.

(defstructure PROCESSIIG-ELEMEIT (kaux ov op ibuf obut)
;; Construct subconponents and store into local variables
(setf ov (part 'evaluator 'evaluator)

op (part 'operator 'operator)

ibuf (part 'buffer-in 'fifo-butfer :depth 10)
obuf (part 'buffer-out 'fifo-buffer))

;; Construct ports
(in 'network-packet-in) (out 'network-status-out) ; for ibut

;; Establish connections between ports
(conn (port? 'network-packet-in) (port? 'packet-in ibut))
(conn (port? 'network-status-out) (port? 'status-out lbut))

)

Figure 4: Defining Component Structure

Subcomponents. Subcomponents are created via the part construct, which takes as
arguments a name for the part, its type, and, optionally, parameters to customize the
creation of the component. Thus, in figure 4, ibuf represents a fif o-buffer component
named buffer-in which can hold no more than ten items. Subcomponents can be accessed
by name through the part? function; here, however, they were stored into local variables
for convenience. They may also be stored into predefined component slots or into data
structures accessible via slots, so that they are easily accessible to behavior code.

The optional keyword parameters passed in to the part primitive are delivered to both
the underlying Flavors instance initialization method as well as to the subcomponent's
structure generation method. Each may then choose to ignore or use these arguments
in customizing the creation of the new component. For example, parameters specifying
dimensiona.lty and connectivity might be among those passed to a subcomponent that
generated a network of nodes organized into a grid topology.

4-369



Ports. Ports are classified by SIMPLi as either for input or output. Their corresponding

constructors are in and out, both of which accept a name for the new port as a parameter.
Thus, in figure 4, the call to in creates and returns an input port named packet-in. Ports
can always be retrieved by name through the port? function. An optional argument to
this function identifies the port's component; the calling component is the default.

Connections. Connections are established through the con, function, which takes two
ports as arguments. Connections between subcomponents are unidirectional and must be
between disparate types of ports: from input ports to output ports. Conversely, connected
ports on a subcomponent and its superior must be of the same type, so that information
may flow up and down the hierarchy. The information on a connection will be handled by
the lowest component in the hierarchy that has an input port accessible via the connection.

Geometry. SIMPLE allows the structure generation code to be embellished with optional
descriptions of the geometry of the component structure. Components can then be inspected
via a graphical previewer, which facilitates debugging. To accomplish this, SIMPLE provides
constructs to define the rectangles representing components, to place ports around the
perimeter of the rectangle, to route connections in Manhattan space, and to place, group,
align, and geometrically transform subcomponents.

2.2 Behavior

A component is essentially a state machine with a notion of time. Its behavior defines the
causal and temporal progression of its states and relates this with the rest of the system
via its ports. System behavior is therefore no more than the composition of the behaviors
of its components.

Events signify the temporal state changes in the simulated system, in terms of the
changes in the values of the ports and state variables of the system's components. They
make the simulation of large, complex systems tractable, by exploiting the property that
only a small fraction of the system state actually changes at any instant in time. This makes
it more efficient to keep track of these changes and to compute their consequences, than
to recompute the state of the entire system at every time step. An event-driven simulator,
such as SIMPLE'S, maintains the temporal relationships between events so that time always
moves forward.

Within this framework, the behavioral specification of a component is formulated in
terms of its responses to the events relevant to it. These responses may include state
changes caused in the simulated future, that is, consequent events to be handled by the
simulator, as well as direct operations on component state. The assertion of consequent
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events and the responses to them (involving further consequences) drives the simulation.

When there are no more events to handle, the simulation is complete.
To maintain modularity in a simulated system, a component's responses to events should

generally be local to it. Consequent events involving a component's output ports are trans-

lated by the simulator into events involving the connected input ports of other components.
Hence, the effects of a local change propagate between components along the connection
paths defined by the system structure. Sometimes, however, a direct, non-local operation
on a related component (for example, a subcomponent) might be appropriate. SIMPLE does
not prohibit the modeller from accomplishing this.

SIMPLE captures component behavior procedurally, as the definition of a method on the
component class. This method is charged with asserting and processing the events that
drive the simulation.

Asserting Events

In concrete terms, an event in SIMPLE is a record that represents a single state change
to the simulated system. It stipulates the component affected, its port or state variable
changed, the new value it will get, and the (future) simulated time at which it will attain
that value. Asserting an event therefore involves passing this information to the simulator
for later processing.

Ports are first-class citizens in SIM PLE, and events are asserted on them by means of the
assert-port primitive. An output port can be retrieved via the port? function described
earlier, and can thereby be passed as an argument to assert-port, along with its new value
and the simulated time of the change.

State variables, on the other hand, are simply places (in the setf sense [13]) that may
hold values. A state variable is therefore specified by the expression that will access the
place that holds its value. Thus, for example, a slot denoting a top-level state variable of a
component is simply specified by naming the slot. The Status slot of an operator is such
a state variable. As a more general example, if Registers is a slot denoting a vector of
simulated registers, then the expression (svref Registers 0) is an accessor for the state
variable representing the first register. The asort-state primitive is used to generate an
event on a local state variable. As with ports, there are no restrictions enforced by SIMPLE

on the values held by state variables.

Processing Events

Once an event has been asserted, at the appropriate simulated time the simulator processes
the event: that is, it makes the state change specified by the event and then invokes the
behavior method that defines affected component's response to the event. The parameters
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to the behavior method are a specifier for the port or state variable affected, its new value,

and the simulated time of the change (which may be thought of as the 'current' time).

A behavior method is typically structured as a set of 'rules', and each rule tests for

conditions and, as satisfied, asserts or directly effects consequent actions. Rule conditions

may include arbitrary predicates on the event parameters as well as on the state variables

and input ports of the component; predicates may be combined through Lisp operators
such as and and or. Rule actions may directly manipulate the component's state as well as
assert events in the simulated future.

SIMPLE supplies a number of primitive predicates for testing'events. The simplest pred-
icates test if the event occurred on a specified port or state. Others additionally test if the
asserted value satisfies conditions such as equality with constants, membership in a set of
values, or membership as defined by type.

Modelling Synchronous Designs

As discussed earlier, event-based simulators assume that state variables (including ports)
remain unchanged until explicitly modified. Synchronous designs, that is, those in which the
opportunities for state change are temporally quantized to a clock, can be modelled in such
implicitly asynchronous simulators by asserting the clock signal on a port of each and every
clocked component of the simulated system. However, if only suone of the components in the
system need take action on each clock signal (as is typical), there is an obvious inefficiency
in this approach that is crippling for systems with even a modest number of components.

If, on the other hand, event times are restricted to integers, the clock can be assumed.
All that is needed is a way to detect the event for which a Boolean combination of conditions
as strobed by an assumed clock is first met. To support this, SIMPLE supplies primitive
condition predicates for detecting an 'edge', that is, a value changed by the current event,
with a coincident 'level', that is, a value set by an event in the simulated past, of two
ports or state variables of a component in either of the two possible event sequences. The
predicate port-state? in the example behavior rule shown in figure .5 has these semantics.

This code also illustrates the generality of SIMfPLE behavioral descriptions. Actions may
directly manipulate state variables (as is done to set Status to 'servicing), assert events
(as is done to the Status state variable and to the Evaluator-Packet-Out port), call
arbitrary procedures (for example, queue-take and time-update), or call methods (such
as :operation-cycle). In fact, the last approach has proven to be a natural way to realize
the functional operations of CARE components not described by behavioral rules.

3 CARE Component Models

CARE defines a small number of multiprocessor components, both primitive and composite,
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((and (port-state? Evaluator-Status-In 'ire* Status 'busy)

(not (queue-empty Pending-Operations))
(eq 'to-evaluator (operation-place (queue-top Pending-Operations))))

; If the operator is 'busy a there's something in the

;; queue for the evaluator & the channel to the evaluator
;; is 'free, then pop the queue and transmit.
(let* ((top (queue-take Pending-Operations)) : pop queue

(post-time (send self :operation-cycle top now)) ; when
(packet (operation-packet top))) ; what

(time-update packet post-time) ; timestamp
(setf Status 'servicing) ; block rule
(assert-port Evaluator-Packet-Out packet post-time) ; xmit
(assert-state Status 'busy (1+ post-i:ie))))

Figure 5: A Behavior Rule

along with the data structures manipulated by them in support of the LAMINA concurrent
language extensions. These are briefly described below.

3.1 Primitive Information Structures

The basic information structures manipulated by CARE components are the process, the
stream, and the packet. Processes encapsulate a single thread of application code, and,
perhaps, an address space. They communicate and synchronize by operating on streams,
that may be thought of as queues that can store sequences of arbitrary values. Although
streams are localized to a single processing site, they may be referenced by remote processes.
Typical operations on streams involve treating them as message buffers, that is, sending and
receiving messages on them, or treating them as memory cells, that is, reading and writing
them. Operations on streams and processes are effected by packets of information being
communicated between, and interpreted by, the components of the simulated multiprocessor
system.

The LAMINA primitives can be used to model both shared variable and message passing
styles of computation (6]. A LAMINA application program consists of sequential Lisp code
interspersed with LAMINA language constructs that have been built from these primitives.
During execution, the primitives cause events that result in control being passed to the
simulator for their handling. In this way, a simulation achieves its goal of focussing on the
interactions between processes.
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3.2 Components

The component types supplied by CARE are essentially those shown in figure 2. These are
elaborated upon below.

Communications Components

CARE supplies primitive communications components that accept (or block), route, and
buffer transmissions in accordance with a dynamic, flow-controlled, cut-through communica-
tions protocol that includes support for multicast (4, 5]. Currently, these are the not-input
and the net-output. All transmissions are encapsulated as packets containing routing and
control information along with application data. To maintain integrity in the simulation,
the data values transmitted in packets are copied before being passed to the communication
subsystem, and packets are sized accordingly.

In keeping with the objective of focusing simulation cycles on the aspects of the simula-
tion particularly relevant to multiprocessor operation, the behaviors of the communications
components are defined in fair detail, that is, at approximately the register transfer level.
Routing operations are described procedurally, as methods on the site or bus composite com-
ponent enclosing the communications components. Parameters allow choice of the routing
algorithm used, width of data channels, routing decision times and so on.

Processing and Scheduling Components

CARE supplies the pme (for 'processor memory element') to accomplish the processing work
of a CARE system. This composite consists of an evaluator, an operator and at least two
fifto-buff ers. 4 The storage associated with this component is not explicitly modelled.

The buffers interface the processing subsystem with the communications subsystem and
are used for local packet receptions and transmissions. Their behavior is also described at
approximately the register transfer level, and allows parametric control of buffer depth.

The evaluator does the real work of the application-running processes that execute
application code. The operator does the overhead work associated with such evaluations,
that is, managing processes and streams. In particular, the operator schedules processes for
execution by its associated evaluator, receives and interprets request packets for operating
on local streams (such as queueing messages on them), and constructs outgoing packets
that require operations to be performed on remote streams and delivers them to the com-
munications subsystem. Thus, depending upon the computation model, the operator can
function as a message coprocessor or as a memory controller.

'There are specializations of the fifo-buffer component for input and for output.
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As indicated previously, the simulation of the operator and evaluator has two aspects:

the control of the flow of information and the actions performed on that information. The

former is described in terms of SIMPLE behav ior -rules, register transfer by register transfer.
The latter is described directly in terms of procedures, and the simulated time taken by
such procedures is modelled. In the case of the operator, this is done as a function of
the number of storage cells manipulated during the operator routine that handles some
primitive operation. In the case of the evaluator, this is done as*a function of the execution
time on the underlying simulation vehicle. Care is taken to ensure that time due to such
overheads as page faults and garbage collection are discounted in measuring application
execution time on the simulation vehicle.

There are numerous parameters associated with operators and evaluators. These primar-
ily affect performance and include quantities such as cycle times, interrupt times, process
switch times, packet formatting times, and so on.

System Level Components

CARE systems consist of a number of sites interconnected in some regular topology. Sites
may currently be embedded into mesh, torus and bus topologies. The basic site composite
is parameterized to generate communications components for up to eight 'neighboring'
sites; it also contains a local processor-memory element. Specializations of the site, for
example, the torus-site and the bus-site, exist to fit the site into alternative topologies
by supplementing the site routing procedures as appropriate to the topology.

3.3 Application Development

CARE has evolved to provide a number of features that aid in developing LAMINA applica-
tions.

Full integration with the underlying Lisp program development' tools such as inspec-
tors, debuggers and editors. Components and the data structures they manipulate
have abstraction interfaces that provide a summary of their state information when
they are displayed in text form. These text abstractions are 'mouse sensitive' and so
can be inspected at successively finer levels of detail if desired. Application and model
code can be debugged via graphical inspection and manipulation of stack frames.
Within the debugger, a single keystroke brings the relevant source code into the edi-
tor. Incremental recompilation allows changes to source code to take immediate effect,
even within the interrupted stack frame. Thereupon, execution can be backed up and
retried, given that intermediate side effecting code is safely re-executable.
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* A means for running batch simulations via script files. The script files might contain

commands that vary application-specific parameters and data sets, as well as sys-

tem configurations and parameters-perhaps based on the results of runs previously

completed. This facility has been used for performance experiments spanning several

days.

* A means for recording simulation executions for later replay (7]. The only inherently

non-deterministic quantities in a simulation run are those that capture the timing of
sequential application code fragments on the underlying simulation vehicle. These
timings are recorded into a file and may later be used to derive the deterministic
behavior of the rest of the system, that is, replay the original run. This can be
useful both for debugging and for varying instrumentation for the - tical system
simulation.

4 Building Instrumentation

The results of a simulation are primarily the insights it provides into the operation of
the simulated system. Where the system designer may seek insights into system resource

utilization or protocol deadlocks, the application programmer may seek insights that help
to debug and understand the performance of a concurrent application program. With this
in mind, the design for SIMPLE'S instrumentation system was aimed at flexibility, while
retaining efficiency to the greatest degree feasible.

4.1 Abstractions and Implementations

SIMPLE's instrumentation system is organized around probe, panel, and instrument abstrac-
tions. Probes monitor individual components, and, when appropriate, supply abstracted
data they have collected to panels. Panels transform and save interesting data from par-
ticular kinds of probes in the system, organize the transformed quantities along various
dimensions, and periodically display the results of summary analyses on this information.
Instruments package together a collection of particular panels, thus providing simultaneous
access to different views of operation of the instrumented system.

SIMPLE implements these abstractions by providing a library of classes, methods and
procedures that obey a predefined measurement protocol. Probes, panels and instruments
are built through instantiation of classes derived from the base classes, and the protocol pro-
vides the foundation for customizations that allow them to achieve the desired functionality.
This is shown in figure 6.

SIMPLE is designed to make the specification of these customizations as incremental as

possible so that existing solutions can be reused. The metaphor it provides to do this
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Figure 6: Instrumentation Runtime

is a familiar one: specialization, which is implemented through the extensive inheritance
facilities of the underlying Flavors system.

Specializations may range from defining the body of a method invoked by the measure-
ment protocol to providing default values for predefined slots that affect the behavior of
the methods that implement the underlying protocol. Default slot values may, in turn,
range from simple values such as strings denoting panel legends or functions defining probe
filters, to lists representing code expressions that are parsed, compiled and called at run
time to accomplish a panel's transformation, analysis and display operations. While a full
d :ussion of the system-supplied opportunities for customization is beyond the scope of
this article, the following sections will attempt to show that the design tries" to ensure that
simple things are simply specified.

4.2 Data Capture: Probes

Each probe is attached to a single component in the simulated design and is responsible for
monitoring a particular aspect of its behavior. This monitoring is made non-intrusive by
ensuring that a probe is informed of all events pertaining to its attached component. As
shown in figure 6, the : applyrules method that defines a component's behavior also has a
daemon method that invokes the :trigger method of all probes attached to the component,
passing the event parameters to each. Each probe is then responsible for taking action based
on the event, if desired.

Probe actions may involve filtering events, querying the values of ports and state vari-
ables on the attached component, manipulating the contents of the probe's own instance
variables (thus, probes can be history-sensitive), and, finally, processing and forwarding
data to attached panels. The processed data is formatted as a property list that tags each
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datum with an identifying keyword symbol, and it is encapsulated with a probed object for
which the data is relevant &ad a number representing the simulated time. The probed object
can be an arbitrary data structure; it may be the attached component or one related to it
(for example, the component enclosing it), a data structure manipulated by the component
(for example, a process structure of an evaluator), or even an application data structure
(for example, a LAMINA object).

An Example

As an example probe, consider the evaluator-queue-probe defined in figure 7. This
probe measures the load on an evaluator in terms of the number of runnable (and running)
processes queued on it. Since processes arriving from the local operator (via the Packet-In
port) increment the load, and since transitions in the evaluator's Status reflect the status
of the process currently being executed and thereby affect load, the :trigger method
checks to see if the event on the attached evaluator is relevant before taking action. As
with component behavior rules, this is done through the state-event? and port-event?
predicates.

(defprobe EVALUATOR-QUEUE-PROBE () ; no mixins
;; instance variables: cache attached evaluator's slots
((Input-Queue (probe-state Evaluator-Queue))
(Site (probe-state Site)))

;; options
(:documentation "Report evaluator process queue lengths")
(:component-type evaluator) ; attach to evaluators
(:trigger (tag value now) ; name the event parameters
(when (or (state-event? Status) ; status change?...

(port-event? Packet-In)) ; or process arrival?
(send self :select ; i.e. inform attached panels...
Site probed object = site component
(list :busy ; probe data property list

(+ (queue-length Input-Queue) # enabled processes
(case (probe-state Status) ; running process?

((ready stalled) 0) (t 1))))
(simulated-microsecond-time now))))) ; probe time

Figure 7: Example Probe Definition

The declarations of this probe's instance variables use the probe-state primitive to
retrieve the values of slots in the evaluator and thus initialize the slots of the probe instance.
In general, instance variables are used to store intermediate state as required for probes that
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track interesting seqences of state changes (for example, the scheduling transitions of a
process). -Note that the site component that contains the evaluator is passed as the probed
object for which the data is relevant. Note also the conversion of event time units (now)
into model-specific time units, through scaling, as the data is passed on to panels.

The :seloct method is part of the measurement protocol for probes. The default
method forwards the probe data on to attached panels through an system-supplied inter-
mediar-y object. This object optionally filters the probe data and, if successful, tags it with
an identifying keyword symbol as required by the panel (so that a panel may distinguish
between different kinds of probes) before calling the :update methods of the selected panels.
A probe filter is specified when defining (or istantiating) a panel that uses the required
kind of probe.

4.3 Data Analysis and Presentation; Panels

Panel operations are accomplished by successive transformations on the data supplied by
probes, ultimately yielding the quantities that are displayed along the various 'axes' defined
by the presentation style of the panel. These transformations are conceptually accomplished
through manipulations on two kinds of records:

" a state record for each probed object, that stores relevant information derived from
the probe data passed in; and,

" a display record that stores the quantities that need to be displayed, and forms the
foundation for display lists.

Display records are organized along panel-specific dimensions to satisfy display goals.
These may be times, durations, frequency and counting bins, probed objects, and so forth.
Both state and display records are created as needed by the panel.

The actions taken by a panel are then to:

9 update the state and display records corresponding to the probe data passed as param-
eters to the :update call. This involves extracting the required data from the probe
data property list, computing transformed values based on this and the retained data
stored in the records, and storing results back into the appropriate records.

* analyze the display lists periodically, that is, reorganize them based on display objec-
tives, such as sorting on display record fields.

* display the results of these periodic analyses in the display style of the panel, that is,
transform display list quantities into graphics actions on the screen.
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-As mentioned ealier, the starting point for defining panels is presentations: class defini-
tions that represent particular display styles. 519PLU's current presentation library includes

scrollab!e text displa,s, scatter plots, fixed and scrollable line plots, histograms, strip charts,
intensity maps and signal animations. These are customized through specialization to define
panels.

Customizations include those that affect the panel's graphical appearance, such as leg-
ends, scales, axes labels and the like, as well as those that achieve its functional objectives.
The latter include declarations of the types of probes required to drive the panel, and inter-
face specijiclaions: arbitrarily complex expressions that specify the transformations between
the information provided by the probes and that saved and displayed by the pane!. Other
customizations control the computing resources used by the panel; these ue pa. .meters
such as sampling intervals, refresh periods, and history depths. Presentations have been
defined so that they supply the most commonly required customizations implicitly.

To retain run time efficiency, the expressions provided in interface specifications are
processed when a new instrument is created. They are compiled at that time inao code
bodies referenced by run time control blocks associated with the underlying methods that
implement the panel measurement prL ocol.

An Example

As an illustrative panel definition, consider the code shown in figure 8. This defines a strip
chart that plots .he recent history of total evaluator queue lengths in the system over time,
thus providing a view of the available application concurrency.

The important points about the specification are:

* The 'probes' specification, which declares the kinds of probes that are required and
how the data they supply will be mapped into the transformation expressions that use
the data. This specification uses a generalized binding format that pairs a keyword
symbol-the probe key-with a particular kind of probe, which allows the panel t
distinguish or combine data from different types of probes, as needed. Keeping probe,
isolated from the transformation expressions in this way allows different probes to be
'plugged in' to the panel by simply specifying a different binding list. The resolutior,
from probe type to probe key is automatically performed by the simulation system as
described earlier.

e The 'axis' specifications, which are expressions describing the transformations on
probe data. Within an expression, the general form for denoting keyed data values
supplied by a probe is as a list composed of the relevant probe key and the relevant
data key, such as (:queue-probe :busy). These value expressions can be combined
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(delpanmel £,LUATCR-QUE-ISTOIY-PINEL
;; slots and initializations
((=am -EVALUITLK QUEUE IIlSI1Y)
(legend "Total Evaluator Qceue Lengths")
(tize-scale-factor 0.001) ; us (from probes] to ms [display]
(samplizg-interval 200) ; 1 sample kept per 200us
(scroll-range 10) ; is 'window' of time displayed
;; interface specifications
(probes '((:queue-probe evaluator-queue-probe)))
(left-axis-form '(:queue-probe :bnsy save-sun)) ; queue lengths
(bottom-axis-for '(:simulator :time)) ; reported probe times
(plot-update-for '(send self update-time (:simulator :time))))

;; slots that are reset betgeen simulation runs
((left-axis (make-axis :label "Evaluator Quene Sum"

:range (make-range 0.0 nil))) ; open ended
(bottom-axis (make-axis :label (format nil "MS by -DUS"

sampling-interval)
:range scroll-range))) ; fixed range

;; inheritance -- base SIMPLE presentation class
(scrolling-line-plot-presentation))

Figure 8: Example Panel Definition

with others as required (through built-in or user-defined functions) to compute de-
rived values. For example, one definition of 'load' on a resource in CARE is through
the formula 1 - (1/1 + Q), where Q denotes the total lengths of all the queues that
need to be serviced by that resource.. Its corresponding transformation expression
might be

(- 1.0 (1 1.0 (1+ (:queue-probe :busy))))

The optional save-sum modifier in the probe value expression for the 'left axis' in-
troduces a summation transformation, which requires that the overall sum be decre-
mented by the previous :busy value reported for the probed object and then be
incremented by the new reported value. Were the modifier absent, the relevant dis-
play record would simply reflect the latest value reported; instead, it now maintains
the running total of the latest reported values per probed object. SIMPLE has a num-
ber of such save functions to aggregate and classify data for display; it also prov;des
a means for new ones to be defined.

The 'update form' specfication which ensures that the panel organizes display lists
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along the dimension of simulated time, corresponding to the 'bottom axis' of the
display. In general, this needs to be specified only when mapping time; other wise, the
default update behavior is sufficient.

This panel does not need the analysis feature that most panels provide as an option.
SIMPLE's basic analysis operation allows sorting display lists by arbitrary predicates applied
to arbitrary record fields. This is expressed through an 'analysis form' declaration such as

(sort-arrays
(list (list 8'> (:latency-probe (+ :launch :network)))))

This code specifies that display records are sorted in decreasing order of the sum of the
'launch' and 'network' delays reported by a latency' probe (presumably monitoring com-
munication latencies). The list of lists format of the specification allows for progressively
finer sorts on items that are equivalent with respect to a coarser sort predicate.

5 Understanding Instrumentation in CARE

In this section, we will try to show how instrumentation helps u:.erstand the operation of
concurrent CARE systems. To do this, we will focus on a particu'ar programming model-
the LAMiNA object-oriented model, and its corresponding multiprocessor model-a message-
passing CARE multicomputer.

5.1 Monitoring Computations

An object-oriented LAMINA application consists of objects that interact only by asyn-
chroriously passing messages containing data values [6]. Objects execute the messages
arriving on their local task streams serially. Each message execution, or task, atomically
manipulates the message contents and the object state and then sends new messages, thus
continuing the computation at some other object.

The CARE message-passing machine model provides the resources that accomplish the
LAMINA computations described above. Evaluators run the processes that execute the
LAMINA object tasks. When a task needs to send a message, the evaluator interrupts the
local operator and passes it the message data. The operator encodes the data values into
a packet and passes it to the communications components for remote delivery. These route
and deliver the packet to the remote site according to some communications protocol. The
operator at the target site queues the message packet on the relevant task stream and
perhaps reschedules a waiting object process for execution in the local evaluator.

A LAMINA application can thus be effectively monitored by simply monitoring the critical
operations peformed on messages by LAMINA objects, namely, the generation of messages,
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the arriel of messages on the target object's task stream, and the ezecution of messages.
The performance of the application can then be understood by monitoring the actions
performed by the underlying system resources in supporting this message traffic, namely,
the creation, communication and receipt of packets, and the scheduling and execution of
processes.

This captured information provides a basis for understanding system operation. The
impact of the application decomposition can be studied in terms of task and message granu-
larities, message volumes and frequencies, over- and under-utilized objects and classes, and
so on. The impact of the system design, its operating parameters, and its finite resources
can be studied in terms of resource utilization, service latencies, resource conflicts, load im-
balances, resource bottlenecks and so on. Some examples of how these may be understood
using CARE's instrumentation are given in the next section.

5.2 Seeing System Activity

In this section, we will describe some representative panels to illustrate the visualization
capabilities cf CARE's instrumentation.

Activity and Load Maps

NETWORK-OPERATOR MAP
Operator QLoad & Network Activity

a 07.

50%

67.%

QUADTORUS-64 907

Figure 9: Mapping Panel

One of the most intuitive kinds of presentations is the mapping presentation. It provides an
animation of activity in the design in terms of the spatial arrangement the system designer
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laid out when the structural organization of the design was defined. The 'Network Operator
Map' panel shown in figure 9 uses this topology to display loe-ds on the operator resources
in the system and the activity in the interconnection network.

The boxes in figure 9 correspond to operators in the system. Their shading indicates how
many packets are queued up for service by the corresponding operator, using the formula for
'load' given on page 21. The indicated load on operators shifts as the simulation proceeds
so that bottlenecks in operator resources stand out visually. Load imbalances show up as
more or less constant utilization of only certain operators.

The lines between boxes correspond to connections made for packet transmission be-
tween the network ports of neighboring sites, so that a qualitative view of the degree to
which the network is utilized at a given time in the simulation is available. We have found
this useful in debugging the network protocols that we have experimented with-deadlocks
and thrashing are often immediately apparent.

In CARE, mapping presentations have been specialized to-create a number of different
panels. We have found it useful for seeing object load (the number of LAMINA objects at a
site), message load (the sum of the lengths of all LAMI[NA task queues at the site), evaluator
load (the number of runnable processes at a site), or, simply, evaluator status.

Utilization Histograms

PROCESSOR UTILIZATION
Time Evaluators & Operators Busy

1 : current NIl: average
12 H• .,-, T, , . ...

7 2 - . . . . . . . . .r .r T T T .-. . ..'" T:T '.T ' T ..'

: ' '' : :' i : : . . . . . . . .. . .... .
4-

8 .-_ _ ..- . ..v .. . .........~ g

.... .. . .. {.+.... ......

0 8 16 24 32 40 48 56 64

Resources Busy

Figure 10: Utilization Histogram
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A more statistical view of the operation of the system over time is provided by the de-

piction of, for example, the utilization of operator and evaluator resources as histogrcms.

The 'Processor Utilization' panel shown in figure 10 shows the percentage of time that a

given number of evaluators, displayed on the top half of the panel, and a given number of

operators, displayed on the bottom half of the panel, have been used. Highlighting shows
what the current situation is (37-38 evaluators are busy) as well as what the average situa-
tion has been through the current time of the simulation (27-28 evaluators have been busy
simultaneously on average).

If this panel indicates that only a few evaluators are concurrently active, it may be either
that -the application is not generating enough concurrency, or that the processing load is
unevenly balanced so that the potential concurrency is not being exploited. Other paneh,
described below, may be used to clarify this explanation.

Load and Latency Strip Charts

OPERATOR POTENTIAL & LATE
1-3 Potentials & Sezrice (+) Wait

64 - - ............... . . .. -. --- "- ......... _'.. =3-
t . . . . / ' r o - 3 e

p . . .... . .

t el0 y

6 - .............
10 s-1

ioi S:l . .

8- 0
4 16 i1 20 22 24

Simulated MS by 20OUS

Figure 11: Activity Stripchart

k. strip chart presentation is a useful way to see what the history of some measure of system
activity has been in the recent past. There are four such measures plotted in the 'Operator
Potential & Latency' panel shown in figure 11.

Two of the measures are plotted on the scale at the right side of the strip chart, and
they show the latency being experienced by operators in the system as they receive and
service packets from the network. The time to service packets is the lower of the two plots,
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and it ranges from 50 to 100 microseconds in this case. There are occasional delays between
the time a packet is received and service on it is begun. This delay is shown as an offset on

top of the time plotted to service packets.
If the latencies shown by this panel have a periodic character with unacceptable peak

times, it may be that there are load imbalances that can be addressed to improve this sit-
uation. Alternatively, more or less monotonically increasing latencies indicate application
pipelines that are not keeping up with their inputs. If the affected pipelines can be repli-
cated and work spread among them, or if the grain size of the larger pipeline stages can
be reduced-and the resources are adequate to the demand-the bottlenecks causing the
increasing latencies may be broken.

The two upper measures plotted i- gure 11 refer to the 'potential' for additional work
remaining in the system. Their scale. Jicating the number of idle operators, is shown on
the left side of the strip chart. The lower of the two plots indicates the number of operators
that have no packets in their service queues. The remaining measure plotted is similar,
and it indicates the number of operators that have less than three packets in their service
queues.

The values of these potential plots is an indication of resource utilization over time. The
distance between them is an indication of load balance: if they are well spread, most of the
operator resources have one to three packets to handle, which -s an indication of good load
balance. Alternatively, both plots close together toward the m:idle of the axis indicate that
half of the resources described have more than three packets to handle and half have none:
an indication of poor load balance. Both plots drawn down toward the bottom of the panel
may indicate an overloaded system: all the resources being monitored have several packets
in their service queues.

As shown in figure 14, similar panels have been defined for the communications subsys-
tem (the 'Network Load & Latency' panel) and the processing subsystem (the 'Evaluator
Potential & Latency' panel). These can be used along with the one described here to see
the relative granularity among the subsystems and their relative utilization so as to discover
the critical resources in the system.

Actiyity Tables

Often the most informative way to prese:it data is as text tables. The two panels shown in
figure 12 use scrolling text presentations to dynamically summarize the activity of LAMINA
objects in the system.

In the 'Activity By Instance' panel, each line in the scroUing display represents a single
LAMINA object in the application. The columns of the tables denote, respectively:

* the expected service time of the object, that is, the product of its average task exe-
cution time and the number of messages in its task stream. This is an indication of
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ACTIVITY BY INSTANCE ACTIVITY BY CLASS
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Figure 12: Activity Tables

the degree to which this object is a bottleneck. The text lines are periodically sorted
so that the objects that have the highest expected servi:e time bubble to the top of
the display. Objects forming potential bottlenecks are the!reby evident.

* the number of messages on the object's task stream.

e the average task execution time for the object, that is, the average time it has taken
to process a message up to this point in the simulation.

* the number of messages that have been processed by the object, an indication of its
relative activity.

# the delay experienced by the most recent message that was executed (as a task) by the
object. (More precisely, the panel reflects the situation when it was last refreshed.)
This delay is the interval from the generation of the message by the sending object
at some remote site to the actual execution of the task by this object at its site.
It represents the overhead involved in getting the task accomplished, and, as such,
includes the latency in getting the message delivered as well as the scheduling delay
before the task corresponding to the message is executed, which may include multiple
schedulings of the process corresponding to the object.

e the site at which the object is located. This can be used to discover if the object is
bottlenecking because of load imbalance, and this is apparent if the most backed-up
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objects are colocated.

9 a printed representation of the object, showing in particular its class. Text lines are
'mouse sensitive' so that the LAM INA object can be inspected through a simple mouse
click.

The 'Activity By Class' panel presents this information aggregated by the class of object
and type of message, as shown in the rightmost column of the display. This information
can be used to see the distribution of work due to the application design. An inappropriate
distribution may in'dicate the application needs to be reorganized; the display provides
guidance about where this effort should be concentrated.

Cumulative Latencies
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Figure 13: Cumulative Latencies
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The 'Cumulative Latencies' panel in figure 13 is an example of a line plot presentation.
It displays a snapshot of the same message delays described above, but as experienced by
the most recent messages received and processed by each of the extant application objects.
There are five curves, incrementally showing the latency experienced by the messages at
the source operator, being routed in the network, waiting for service at the target operator,
being serviced by the target operator, waiting for execution at the target evaluator, and,
finally, being executed as the task that consumes the message. The curves are ranked by the
sum of the first four delays above, which represents the overhead in getting the requested
task accomplished at the targeted object.

5.3 A Complete Instrument

The panels described aboye have been collected into the CARE 'Observer' instrument shown
in figure 14. Additionally, the instrument provides an annotation panel reflecting system
parameters and other data, so that experimental parameters are evident.

The instrument thereby provides a unified view of system operation that correlates
the activity of hardware abstractions, that is multiprocessor subsystems, with application
abstractions, that is, LAMINA objects.

6 Conclusions

The SIMPLE/CARE effort began on the premise that multipi,.essor systems could be studied
through simulation at an architectural level while being driven by significant concurrent
applications. SIMPLE/CARE has evolved to support this thesis, by coupling flexibility with
reasonable performance. The key features that enable it to do so are:

" Component-based design capture that is tightly coupled with the underlying object-
oriented programming system, and which allows systems to be built up incrementally
and hierarchically.

" Arbitrary data types and lengths in simulation. The information whose creation and
flow is controlled by simulated components may be of arbitrary complexity-from
integers and symbols to procedure bodies and execution environments.

" A modular instrumentation architecture that permits system instrumentation to be
modified independently of the system design. The architecture offers a broad range
of customizations, including: probes for data capture and panels for data presenta-
tion, arbitrary expressions for probe data transforms, many-to-many probe to panel
mappings, summary analyses on data, and a %ariety of display styles. SIMPLE'S cur-
rent library of display st'les includes sorted, scrollable text lines as well as self and
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fixed scaling, 'two and a half' dimensioned, history-sensitiv, displays that m be line

graphs, histograms, strip chaas, intensity maps and sigpnal animations.

e Leverage from the underlying Lisp environment that provides a comprehensive suite of
tools for program development (such as debuggers, inspectors and method dictionar
ies), allows changes in model or application definitions to have instantaneus effect,
and provides quick access to source code.

" A focus on the interactions between multiprocessor system components, which im-
proves performance without sacrificing critical detail. The CALE component library
simulates the behavior of network components at the register transfer level while di-
rectly executing and timing purely sequential application code.

" An application language interface that is easily modified without recasting the infor-
mation flow control defined by CARE component behavior.

Researchers within the Knowledge Systems Laboratory have used sIMPLE/CARE to study
a broad spectrum of problems in concurrent systems [9]. Their experiments have involved
simulation runs of a few minutes to many days in duration. While faster would surely be
better, performance has for the most part proven adequate to their needs.
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Abstract

Lamina is an experimental programming framework that allows concurrent algorithms to be
expressed using both value-oriented and reference-oriented styles. It provides mechanisms
and syntax (as extensions to Common Lisp [Steele 84]) to describe and control concurrent
computations so that their performance may be studied using the Simple/CARE
architectural simulator [Delagi 88]. This paper describes the Laninafunctional, object
oriented message passing and shared variable programming models, along with a simple
worked example of their use. It also describes the underlying primitive operations that
support the models.

1. Introduction

In this paper we present Lamina, a programing model developed as part of the Advanced
Architectures Project at Stanford University's Knowledge Systems Laboratory [Rice 88].
To motivate the value of the programming constructs introduced we use a trivial worked
example, involving simple operations being performed to matrices. This worked example
is implemented in a number of different ways, using Lamina's Functional Programming,
Shared Variable and Object Oriented programming constructs.

Although the Lamina language is primarily a research vehicle, it should be noteed that it has
been used to address non-trivial programming tasks. Large, expert system applications
have been implemented using Lamina as part of our research. The utility of the
programming constructs described herein is therefore well established.

This paper is a rewritten version of a previously published technical report, KSL-86-67. It
does not present any materially different ideas, it does, however,, present the ideas of the
Lamina programming model with the use of a new, simpler worked example problem.
This should help to focus the reader's attention on the broader significance of the
programming model rather than specific implementation details. In fact, the worked
examples, although written Lamina's extended form ofCommon Lisp, were written in a
manner that minimized the use of Lisp-specific syntax or constructs. Thus a reader who is
unfamiliar with Lisp should still be able to understand these worked examples in terms of
more common programming languages, such as C.

1. 1. Cells, Futures and Streams

Cells form the basis for perhaps the simplest form of interprocess communication and
synchronization. Communication is accomplished by reading and writing cells that are
shared between concurrent processes. Synchronization can be accomplished by having the
memory system support an atomic read-modify-write cell operation (such as an exchange).

Futures [Friedman 80] and [Halstead 85] can be thought of as cells that represent promises
for potentially unavailable values. They can be used as placeholders in a computation while
their values are being eagerly [Lieberman 81] produced by concurrent evaluations for
consumption as available. Futures therefore embody both communication (of the produced
value) as well as synchronization (because the value must be produced before it can be
consumed). Streams [Lieberman 81] and [Shapiro 86] generalize futures by representing
sequences of eagerly produced but potentially unavailable values as a single abstract data
type. Streams can thus be used to build pipelines of computation connecting the producers
and consumers of values.
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Streams and futures may be the arguments to or the results of function applications.
Furthermore, certain operators (sometimes called non-strict operators) do not require the
actual values promised by a stream or future in order to perform their work. For example,
a constructor (such as cons) may create data structures that include streams as elements
without accessing any of the promised values the streams represent; referencing the
placeholders is sufficient.

Lamina provides the stream as its primitive data type; a future is a specialization of a
stream that represents only a single value. Streams and futures, because they represent
arbitrary values such as lists and vectors, must be managed by a resource such as a
processor-with attendant costs. Cells, however, can hold only single, fixed-size
quantities such as small integers or references to other cells; thus, operations on cells (such
as read and write) can be efficiently handled by simple memory controllers.

1.2. Multi-Level Address Spaces

Lamina's address space design is based upon expectations about the expenses involved in
global storage reclamation. If references (pointers) are allowed to exist between processor
address spaces, relocation of the referenced data (for example, as required by a copying
garbage collector) requires global synchronization, which can be expensive. Lamina's
multi-level addressing scheme therefore creates inter-processor references only as
necessary, so as to allow for independent, globally unsynchronized storage reclamation to
the greatest extent possible.

APPUCATI N LOCAL
structured value copy

reference I""e .... * APPLICATI N DYNAMIC

#' <FEF ... . ( ........ ) ( ...... ))

APPLICATION STATIC

processor 1 1 processor 2
Figure 1. Local, Dynamic, and Static Addresses

As shown in Figure 1, an application's address space consists of

* static space containing data structures such as code bodies and constants (e.g.,
keyword symbols), which are regarded as immutable. They are therefore neither
relocatable nor reclaimable, and so may be freely referenced and cached by any
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processor. Lamina does not explicitly model transactions concerning data in static
space; it assumes that static data is always available in a processor's cache.

dynamic space containing cells (in the shared variable model), and indirect
references to streams and futures. Indirect references may be thought of as remotely
unreadable and unwritable 'reference cells' containing pointers to local data
structures that represent streams and futures. References to data structures in
dynamic space are allowed to exist between processor address spaces; hence, the
data structures may only be relocated through globally synchronized operations
affecting all computations that could access them. Note, however, that streams and
futures (and the data values that they represent) may be locally and asynchronously
relocated because of the indirection involved when they are remotely referenced.

Streams, futures and cells are only visible as references in Lamina. In the
remainder of this discussion, then, the terms 'stream', 'future' and 'cell' should be
taken to be equivalent to references (perhaps indirect) to data structures of the
appropriate type.

• local space containing arbitrary local data values. Local data structures cannot be
remotely referenced and are always copied between processor address spaces.
They may therefore be independently reclaimed and relocated.

1.3. Communicating Values

In Lamina, a data structure of arbitrary complexity can be supplied as a value of a stream or
future either local or remote to the processor address space in which the structure was
generated. This is passed by copying, so that the structure is isomorphically reproduced at
the target stream or future.

When values are passed between processor address spaces, the structure representing the
value, that is, the structure value, is recursively encoded until a data structure is produced
which has the same form and internal relationships as the original value but which holds
only: static references to structures in static space, dynamic references to structures in
dynamic space, internal references to elements of the new structure value, and self-
referentials or'immediate' data objects such as small numbers. This encoded data structure
thus contains all the information required to form a copy of the original structure at the
target stream or future, through the reverse operation of decoding.

Depending on the underlying system, encoding of a structure value might be done
asynchronously with evaluation of the user application, so if changes are to be made (at any
depth) in the stActure passed between address spaces, independent copies of the structure
should be formed.

An example of values and references passed between processor address spaces is shown in
Figure 1. One of the values of the stream in the application's processor 2 local address
space is an independent copy of the structure value in the application's processor 1 local
address space. Both structure values are heap allocated from independently managed heaps
in separate local spaces. The other value shown for the same stream is an indirect reference
to the other stream; the stream, in turn, represents (or contains) the original structure value.

1.4. Storage Management

The cheapest approach to the dynamic allocation (and deallocation) of memory is stack-
based and local. However, the benefits of stack-based operation come at the cost of a
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prescribed order of deallocation. Additionally (at least for the commonly used memory
management enforced stack limit schemes) stack-based operation entails a minimum storage
commitment that is significantly larger than the rest of the execution environment for each
small granularity evaluation expected for Lamina programs. Stack based allocation can be
used whenever references to structures with dynamic extent [Steele 84] are known to be
entirely within a given sequential computation.

The next cheapest approach, for references that are local with indefinite extent [Steele 84],
is heap based allocation in local space. Since such references are confined to a single
processor address space, their referents may be allocated, relocated, and reclaimed
asynchronously with operations on other processors and memories, based on just the
information in the associated processor address space.

Finally, as the most expensive approach, global references may be made to dynamically
allocated references (that is, to cells and reference cells) which must be relocated under a
global synchronization scheme. Allocation in dynamic space is done independently by each
processor and each allocation is distinct. Operations involving dynamically allocated
references are handled by the processor (or memory controller) associated with the
reference. The referents for such references (that is, the streams and futures) are mutable,
and may be viewed as uncacheable.

References to locally allocated structures can also be passed between processor address
spaces, by encapsulating them in streams and then passing out the (indirect) reference to the
stream. By this indirection, pointers to locally allocated structures are held locally (and
may readily be relocated) but a means is provided to reference them in other processor
address spaces.

2. LAMINA Primitives

In this section we discuss the Lamina programming language primitives.

2.1. Creating Streams

Streams are created by the primitive function new-stream, which returns a reference to a
new stream on the executing (that is, local) site. Futures-streams that have at most one
value-may be created by the function new-future. Streams and futures may be labelled
for debugging purposes by including a 'tag' as the optional first argument of its
constructor, as in

(new-stream 'requests)

The default is for a stream to inherit a tag identifying the execution which creates it.

As described earlier, streams and futures are only visible as references. The site of a
reference, that is, the processor on which it was created, may be determined by executing

(reference-site reference)

which returns a site identifier that may be used to specify sites as required for parameters to
other Lamina primitives. References can also be tested to determine whether they are the'equal' by the function eq-reference, a predicate that tests if the two supplied references
are to the same, potentially remote, stream or future.
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A stream may be thought of as an ordered queue of postings, each containing, among
other things, a value. The default order of postings on a stream is non-deterministic arrival
order. Sometimes, however, it is desirable to override this default so as to control the
order in which values are consumed from the stream.

A stream ordered by increasing numeric keys, supplied as part of the postings it receives,
can be created by the function, ordered-stream; this is typically used to prioritize the
values currently available on the stream. Similarly, a stream that provides values instrict
sequence according to non-decreasing integer keys, again supplied as part of the received
postings, can be created via sequenced-stream; this is typically used to minimize
scheduling overhead by deferring executions involving the consumption of 'out of order'
values. Both these kinds of stream have application in the Lamina object oriented
programming model discussed in Section 5.

When a locally allocated data structure needs to be passed between potentially concurrent
computations as a reference rather than as (a copy of) its value, the form (reference
item) returns a reference for the value of the item. This is implemented by placing the
value on a local valued stream which can then be remotely referenced.

2.2. Producing Values for Streams

Streams acquire values as a result of postings received by them. This is directly done by a
producer using the posting operation as in

(posting value to targets ...))

The operation is non-blocking; it immediately returns and the actual transmission of the
(copied) value will occur some time later.

The posting may be multicast [Byrd 87] by supplying a list of target streams rather than a
single target, so that each will receive a unique copy of the value. Additionally, there is a
facility for specializing the value transmitted in a multicast to the individual targets of the
posting. Any place a stream is used as a target of a posting, it may be replaced by a cons
of that stream and the value specialization for that stream. The value specialization will be
prepended to the supplied value and the combined list will be taken as the value of the
posting when it arrives at the target stream. Specialization is specified by a list of lists even
if only one target is involved, in order to distinguish it from a list of unspecialized targets.

The keys required for correct operation of ordered and sequenced streams can be included
in postings by specifying a number following the keyword 'by' in the call creating the
posting. Other keywords are also available, and, since they are used by many of the
Lamina primitives, they are listed here.

to, on targets: A target stream or list of targets streams for the indicated primitive
Lamina operation. Some primitives expect site targets rather than stream targets, as
discussed in later; for these, if no site is provided and one is needed, an unspecified
site is chosen. The choice between the alternative keywords shown is purely
stylistic.

* for clients: A stream or list of streams acting as the continuation of the computation
that will be triggered by the Lamina operation.

* as tag: Arbitrary data for debugging. Defaults to the tag of the sending execution.
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" by order-key: A number which may be used to order information in target streams.

" after delay: A positive number indicating the number of milliseconds that the
operation will be delayed before being attempted.

• with properties: Arbitrary data intended for user extensions of the posting protocol.

2.3. Consuming Streams

The primitive first-posting returns the first posting of those present on the referenced
stream. The primitive next-posting does the same but also removes the posting from the
stream. Finally, last-posting returns the last posting and eliminates all others on the
stream.

If the stream is empty, the three stream posting access functions return nil. Otherwise,
they return a posting as a list consisting of the value, clients, key, tag, origin, and
properties of the posting. For convenience, these elements of this list may also be accessed
by the posting- primitives: -value, -clients, -key, -tag, -origin, and -
properties. The number of postings available on a referenced stream is returned by the
primitive postings.

If it is desired that execution be blocked until there is a posting for a specified stream, the
stream posting access forms above may be wrapped in an accept construct, as in

(accept (next-posting stream))

In this case, when a posting is available on the indicated stream, the posting is returned to
the restarted or resumed execution.

Futures in Lamina are defined so that their value, once attained, cannot be removed. Hence
only the first-posting operator is a valid accessor for a future.

The access primitives described above will, if necessary, coerce the referenced stream into
one local to the calling site (through relocating as described later). Sometimes, this is
not the desired behavior, so a way is provided to access potentially remote streams without
incurring this side effect.

2.4. Remote Streams

Posting-by-posting access of the information on streams may also be accomplished by
requesting that a stream access function be applied to the streams at the site they exist on, as
in

(accessing access-function on targets for clients ... )

The access-function may be any of the stream posting access functions, for example, the
function next-posting described previously. A posting will be sent to the client streams
when one is available on a target stream. This is the only way provided for expressing
competitive access to a common stream.

An interlocked operation on streams is provided by

(exchanging value on targets for clients ...)
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This causes last-posting to be applied to each target stream and the result sent to each
client stream. The value replaces the last posting on the target stream. The exchange is
atomic with respect to each stream.

2.5. Managing Streams

Streams in Lamina may be managed in various ways across the system.

2.5.1. Copying Streams

A posting sent to parent streams in a tree of streams set up by copying operations will
result in copies of that posting also appearing on all the descendant streams in the tree.
Such a system of streams can be built by
(copying parents to children for clients ... )

The references for the child streams are sent in an operation request posting to the parent
streams where they are added to the child references of the parent. The current queue of
postings held in the parent stream is copied and returned in one combined posting that is
multicast to the child streams. These postings become part of each child stream. When
each child receives the combined postings, it sends on to the client streams a completion
posting whose value is the parent stream from which it received the posting queue. This
can be used to validate that a requested copy operation has been accomplished.

2.5.2. Linking Streams

The linking operation is an optimization of copying for those cases where it is known
that postings need not be retained on intermediate streams in a system of linked streams.
Linking parent streams to child streams serves to restrict the parents to act only as
intermediaries in a system of linked streams as in
(linking parents to children for clients ...)

The references for the child streams are multicast in an operation request posting to the
parent streams. When a parent receives the references, any postings already on parent
streams are sent to the children specified by the references and eliminated from the parents.
Further postings are not retained on parents after they receive a linking directive but are
immediately passed on to the child streams. For efficiency in forwarding, the
implementation may bypass intermediate levels in a system of linked streams.

2.5.3. Value Specialization

Target specialization may also be used with the linking or copying operator to specialize
the value of postings transmitted from parents to children as in
(linking parents to

(list (cons child-i value-specialization-1) ... ) ... )

Thereafter, all postings that traverse the links from parents to children will have the
appropriate value specialization prepended to their value. This is the mechanism used to
support the implicit continuations provided by the Lamina object oriented model.
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2.5.4. Relocating Streams

A linking operation does not change the way that a child stream orders postings or
presents them. Relocating a stream from one site to another while preserving its
accumulated postings as well as its means of ordering and presenting them, is specified by
(relocating parents to children for clients ...)

This is used when there is an attempt to read from a stream that is not local to a site. The
attempt causes the reference used to specify that the target stream target a new child stream,
the relocation of the previously specified target. No change can be detected in the operation
of eq-reference on the reference after relocation.

2.5.5. Group Streams

An application in Lamina may wish to view a group of streams as a composite, carrying out
some operation only when all of the streams in the group have received a posting. To
minimize unproductive scheduling, computations may wait on such composite group
streams rather than on the individual streams. Group streams are created by new-stream
called with a : group keyword argument as in

(new-stream tag :group member-streams)

A stream may be the member of only one group but a future, since its value, once attained,
cannot be removed, is not so restricted. If streams of values are to be made available to
several groups, a system of linked or copied streams must be used to accomplish this.

If a member stream is not local to the site of its group stream, a local member stream is
created and the remote member stream is relocated there. The postings sent to the local
member streams are taken from the member streams whenever a request that has been made
to accept a posting from a group stream can be satisfied. Each posting available from a
group stream will contain, as its value, a list of the postings received by its component
streams. The order of posting elements in the list representing a group posting corresponds
to the order indicated in specifying the component streams of the group stream when it was
formed. Group streams are used to schedule an implicit continuation only when values are
available on all streams upon which the continuation is waiting.

2.6. Creating Processes

2.6.1. Restartable Processes

A separate, concurrent computation is created by spawning the execution of a closure as in

(spawning #'(lambda () form) on site for clients ... )

The closure is formed and the clients returned immediately as the value of the spawning
operation. The closure will sent to the indicated site and eventually executed there. The
result of that execution will be returned to the specified clients.

Spawned computations can block waiting for a value to be available on a stream. When the
value is available they will be restarted and any intermediate computations done previously
will be redone. This approach is taken to avoid dedicating stacks for every spawned
computation. However, often the continuations of partially completed computations can be
spawned on the same site as their parent, thus preserving intermediate work as well as
eliminating the need for dedicated stacks. This is described in Sections 3 and 5.
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2.6.2. Resumable Processes

If an execution is blocked on trying to access an empty siream, it can either be restarted, as
discussed earlier, or suspended and resumed when that stream receives a posting. In
general, suspending and resuming a computation (without spawning continuations)
requires preserving indeterminate amounts of intermediate (control and binding) state with
one or more stacks. Maintaining many independent stacks is certainly an expensive
operation in simulation and may also be so in a target system implementation.

However, for occasions when the full power and expense of stack switching is warranted,
Lamina provides the mounting primitive. This is called and behaves like spawning, except
that it creates a process with associated stack storage at the indicated site.

One could implement a mu!tiple fork and join construct (like cobegin and coend) by
mounting a number of processes with a common client stream. The creator could then wait
for the appropriate number of responses on the client stream (to ensure that the other
processes had completed) and then continue its execution.

In applications that wish to view executions created with mounting as non-terminating, the
execution will typically have an initial section that sends a reference for a newly created'task' stream to mutually agreed upon client streams (by an explicit posting). The
referenced task stream will then be used to supply the newly mounted execution with
additional operations to perform after it completes its starting procedures.

2.6.3. Remote Closures

An value may be sent to a remote site, a reference for it created there, and the reference sent
to specified clients using
(loading value on site for clients ...)

The client streams are returned immediately by the form, and they will eventually receive a
reference for the value loaded on the specified site.

A remote closure may be created by

(loading #' (lambda arglist form)
on site for clients ...)

It may then be applied to locally evaluated arguments by passing it those arguments as in

(passing parameter-list to closure-reference
for clients ...)

The result of the remote application is sent to the specified clients. The loading and
passing operations are combined in spawning.

2.7. Miscellaneous Utilities

A few utility operations are provided by Lamina to specify computation and storage sites,
dismiss computations, and provide a timeout facility for applications desiring one. Lamina
also provides simulation control facilities to initiate a simulation, read the current simulation
time, and do a computation without increasing the simulation time.
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The function random-site returns a identifier for a site chosen randomly with uniform
distribution over the processor sites in the simulated system. The function random-memory
does the same thing over the memory controllers in the system. The function local-site
returns an identifierfor the site executing the function. The function local-memory returns
an identifier for a memory controller associated with the processor on which the function is
executed.

In order to provide a timeout facility, the keyword after followed by a number of
milliseconds in simulated time may be included in functions that take Lamina keyword
arguments. The simplest use might be to specify that a posting to a stream be sent at some
future time.

A call to dismiss breaks execution. With no argument, execution is rescheduled
immediately (but occurs after all previously scheduled executions are run). If an argument
is specified which is a non-nil symbol, execution is terminated and will never be
rescheduled. If a local stream is specified, execution is rescheduled when next that stream
receives a posting-or immediately, if that stream has a posting on it.

The current simulation time in milliseconds is returned by the function simulation-time.

Some computations in a simulated application need not (or should not) be timed. The
macro without-clock may be used to wrap such computations so that they are
accomplished 'off the clock'. This is generally a good idea for calls to debuggers and the
like as well as for input and output operations.

Something special must be done to start up a simulation. The form
(boot (at time site-coordinates form) (at ...) ...)

will spawn computations to execute forms at the indicated sites beginning at the specified
times (in milliseconds). The site coordinates are given as a list, for example, , (3 2),
whose length matches the represented dimensionality of the processing unit (a surface for
the case shown). The boot construct resets the simulator and thus may only be executed as
the first operation of an application being simulated. Note that boot spawns rather than
mounts a computation. If a mounted computation is needed, it must be explicitly mounted
by the computation that boot spawns.

3. Functional Programming

Perhaps the style of computation most readily treated as concurrent is that of functional
programming. Lamina supports concurrent programming using this style by providing
means to (1) spawn computations that will provide values :.o futures and (2) accept such
values in a computation-scheduling the computation when they are available. The
constructs defining the Lamina interface for functional programming are

(future form) spawns execution of a lexical closure, that is, a procedure body to
execute a given form together with an environment (determined by the rules of
lexical scoping) in which to do the execution [Steele 84]. This closure is executed
(eagerly) on a randomly selected site. A future which will contain the value of the
computation when it is available is immediately returned.

• (with-values future-bindings forms) spawns an evaluation on the local site
to execute the closure corresponding to theforms. The evaluation is done within an
environment that iicludes bindings for given variables to the values available for the
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indicated futures. The evaluation is deferred until all of the indicaed futiem ham
values that are not themselves futures. The inunediase result of executing a wiih-
values form is a future ulu value will be stppied by the deferredvaluaion

Each element of afulure-bindings list is itself a list- (bi;-.g-pattern future-
specifier). If evaluation of a future specifir in a with-values Construct
produces a value otler than a future, the value is encapsulated by a future. Aher all
specified futures have values (which are not themselves futures), the values of each
of the futures are dest- ctued, that is, the values ar treated as list structures and
the elements of these list structures are used to bind corresponding variables in a
binding pattern of arbitrary depth. The bindings will be included in the
environment in which the spawned computation is executed. Only with-valees
can be used in Lamina to reduce futures to values. Values of futures are never
taken as an ancillary consequence of any other operation.

The results of the evaluation spawned by ,ith-values are returned as a future
which will receive tie value of the spawned computationL The spawned evaluation
is treated as the continuation [Steele 76] of the spawning computation, and, as
such, captures all stack allocated temporary variables required to execute that
computation. Thus, each spawned computation may be viewed as running to
completion; its continuation, if any, is an independent spawned computation-

All spawned computations run to completion (although they may be suspended by system
level operations), and so the stack of the executing processor is generally left clear.
Therefore any space allocated for it may be reused by the next computation on that
processor, allowing the advantages of stack-based operation without incurring the space
penalty discussed in Section 1. The costs of heap allocation are incurred only as needed.

4. A Simple Example: Matrix Manipulation

In this section, to illustrate the use of the Larmina functional programming interface, we will
develop a parallel implementation to a simple problem in matrix manipulation. This same
example problem will be used later to show the use of some of the shared variable and
object oriented programming constructs. While this example is simple and by no means
uses all of the Lamina programming constructs it should serve as a reasonable guide to
show the form of Lamina programs and how they Lamina programs can exploit replication
and pipelining to enhance parallelism.

In the ensuing program examples we have tried to use the minimum of programming
constructs from the native Common Lisp language so as to focus particularly on Lamina
programming. The names of Lamina programming constructs will be in upper case to
distinguish them from the rest of the example code. We have also gone to some lengths to
write them in a style which is probably more like the style of FORTRAN or Pascal than
Lisp so as to make them more intelligible to the average reader. However, in preparing this
example we have not compromised on realism. These examples do, in fact, work.

The following simple points should help the uninitiated to understand the examples.

• Lisp uses the syntax (f x y) to denote the application of the function f to the
arguments x and y, i.e. f (x, y) in Pascal. Indeed, all syntactic forms in Lisp have
the name of the programming construct as the first word inside a set of parentheses.
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- The form (defun foc (x y) ,... ,) declares a function called foo with
arguments x and v with a body --- v.. Program consiucts that define new things
begin with "'def". Thus, defconstant declares a constant.

o The form (aref array i j) is th array indexing operation that extracts the it
row and j 6 column value from the arfay, ic. array (, j) in Pascal.

0 The form (zetf 4.lace* .vaiue*) is an assignment statement that puts the value
4cwaluev into the specified place. For example, (setf foo 42) puts the value 42
into h variable called foo. Similarly, (serf (aref array i j) 42) puts the
value 42 into the i, j&h element of array.

- Comments in Lisp programs are denoted by a semicolon character. In our example
we use dm to make them stand out.

- Literals are introduced in Lisp by the single quote character. For example, ' (a b
c) is the literal list with the three elements a, B and c.

0 Functions are often passed as arguments in Lisp programs. This can be done either
by passing the literal function object (code body) or by passing the name of the
function. In our examples we pass functions as arguments by passing their names.
A functional argument can be invoked by the use of the funcall function. For
example, the form (funcall <<funarg'h argl arg2... ) applies the functional
argument to the arguments supplied. Thus, (funca1l 'f 42) = (f 42).

First let us consider the serial problem. Given a matrix a [i, j], compute the new matrix
b[-, jJ = f(g(a[_,j)) where f and g. are non-trivial functions and print out the
resulting value. For the sake of simplicity in our example we assume the following: f (x) =
z + 2 and g cx) x * x and the array a has dimensions width, height, i.e. ranges over
a [0..width-I, 0..height-1]- In our example, width = 3, hcight = 3.

Now let us make some simple global definitions that will be of use in our example.

(defun f (x) (+ x 2)) ;;; The function F
(defun g (x) (* x- x)) ;;; The function G
(defun f-of-g-of-x x) (f (g x))) ;;; The function f(g(x)).
(defconstant width 3) ;;; The width of the matrix
(defconstant height 3) ;;; The height of the matrix
(defconstant dimensions (list width height))

;;; The dimensions of the matrix
(defun print-out-result (i j value)

;;; Print out a line with <i-coord> <j-coord> -> <value>
;;; e.g. ;;; . 1 2 -> 27
Cwithout-clock (format t "-&-S -S -> -S" i j value))

We are now equipped to define our simple, serial solution to this problem.
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(defun compute-f-of-g-of-matrix (matrix)
;;; This function loops over each element in the matrix, computing
;;; f(g(x)), for each element and putting the value back in the
;;; matrix. It ends by returning the matrix.

(loop for i from 0 below width ;;; Loop over rows
do (loop for j from 0 below height ;;; Loop over columns

;;; Compute new value
for new-value = (f-of-g-of-x (aref matrix i j))
;;; Update each cell in the matrix with
;;; f (g(<cell>)).
do (setf (aref matrix i j) new-value)

)

matrix ;;; Return the updated matrix
)

(defun print-out-matrix (matrix)
;;; This function takes a matrix as its argument and loops over the
;; elements printing them out.
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
;;; Print out a line with

;;; <i-coord> <j-coord> -> <new value>
do (p~int-out-result i j (aref matrix i j))

))
)

We can now execute our example program by creating the original matrix and then calling
the functions defined above.

(defun make-example-matrix ()
;;; Create a 2 dimensional matrix that is initialized
;;; with the numbers 0..8

(make-array dimensions :initial-contents
'((0 1 2) (3 4 5) (6 7 8))

)

(defun serial-example ()
;;; Trivially compute the serial example.

(print-out-matrix
(compute-f-of-g-of-matrix (make-example-matrix))

)

Now we can actually run the example.

(serial-example) ;;; Run the example. The results follow.
0 0 -> 2
0 1 -> 3
0 2 ->6
1 0 -> 11
1 1 -> 18
1 2 -> 27
2 0 -> 38

2 1 -> 51

2 2 -> 66
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4.1. Using Lamina's Functional Programming Primitives in our Matrix
Example

In this implementation of our example problem we use the CARE functional programming
constructs FUTURE and WITH-VALUES to compute our solution in parallel. For each cell in
the matrix we spawn a future to compute the desired value. This gives us parallelism
through replication.

(defun compute-f-of-g-of-matrix-as-futures (matrix)
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
;;; Compute new value as a future
for new-value

= (FUTURE (f-of-g-of-x (aref matrix i j)))
Update each cell in the matrix with
f(g(<cell>)).

do (setf (aref matrix i j) new-value)

matrix ;;; Return the updated matrix
)

We now have to use the CARE simulator to run this example. The CARE simulator like
many operating systems cannot simply execute the program without having a little more
information about the way in which it is to be launched. We therefore have to write a little
harness to execute our example so that it will be launched on a particular processor at a
certain time. A similar piece will be used to boot each one of our examples below.

(defun boot-functional-programming-example-I ()
;;; Starts up the example on processing element (1 1) at time = 0.

(BOOT (at 0 '(l 1)
;;; The following actually executes the example.
(print-out-matrix
(compute-f-of-g-of-matrix-as-futures

(make-example-matrix)

(boot-functional-programming-example-i) ;;; Run the example
0 o -> [remote (1 1) #(future 201333 (f (g Caref matrix i j))) 0 0))
0 1 -> #[remote (1 1) #[future 270998 (f (g Caref matrix i j))) 0 0])
0 2 -> #[remote (1 1) i[future 299662 (f (g aref matrix i j))) 0 0])
1 0 -> #(remote (1 1) #[future 332660 (f (g Caref matrix i j))) 0 0))
1 1 -> 1[remote (1 1) 1[future 366658 (f (g Caref matrix i j))) 0 0)]
1 2 -> #[remote (1 1) #(future 400989 (f (g (aref matrix i j))) 0 0]]
2 0 -> #(remote (1 1) #[future 437655 (f (g Caref matrix i j))) 0 0]
2 1 -> #(remote (1 1) #[future 470986 (f (g Caref matrix i j))) 0 0)]
2 2 -> #(remote (1 1) #[future 500983 (f (g Caref matrix i j))) 0 0)]

Note: in this case what gets printed out is a collection of futures. This is because the
Lamina system, unlike most parallel systems with futures, does not perform automatic
defuturing of any futures.

If we want the actual values associated with the futures then we must wait for the
computation to take place. To do this we use the WITH-VALUES construct. We could
modify our printing procedure as follows to wait for the results.
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(defun print-out-matrix-of-futures (matrix)
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
do (WITH-VALUES ((value-of-future-in-cell

(aref matrix i j)

Update the matrix with the defutured
value.

(setf (aref matrix i j)
value-of-future-in-cell

Print out a line with
<i-coord> <j-coord> -> <new value>

(print-out-result i j (aref matrix i j))

(defun boot-functional-programming-example-2 ()
;;; Starts up the example on processing element (1 1) at time = 0.

(BOOT (at 0 '(1 1)
;;; The following actually executes the example.
(print-out -matrix-of-futures

(compute-f-of-g-of-matrix-as-futures
(make-example-matrix)

Now we can run the example.

(boot-funct ional-programming-example-2)
0 0 ->2

0 -> 3
0 2 ->6

1 0 -> 11
1 1 -> 18
1 2 -> 27
2 0 -> 38
2 1 -> 51
2 2 -> 66

Note: in this case, whilst we are printing out the values in the matrix, other values are being
evaluated. This is a form of pipeline execution. The performance of this example is,
however, limited by the fact that a single process is waiting for all of the results before it
can print them out. A more parallel solution would result if we could avoid this
synchronization to print out the answers.

-'e code for this example is written using single-valued futures. A consequence of this
future-based functional programming approach is that many short-lived dynamic references
are created and then abandoned when the result appears. Reclaiming the space allocated for
them requires the expensive global synchronization discussed in Section 1. One way to
improx'e things might be to establish a stream to the process that prints out the answers so
that we could print them out as they arrive with the minimum of delay. This would mean
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that only the reference to this reply stream would have to be created, not one reference to
each of the futures that represent the matrix To do something like this, though, we would
have to modify our simple use of single-valued futures in our example. This could be done
either by introducing a new type of future that represents a sequence of values or we could
tr., tius, sequences of values as communication channels between objects. The idea of
streams as sequences of values and tasks to perform is developed further in the next section
in which we discuss an object-oriented implementation of our matrix processing example.
The idea of a Multi-future, a multi-values future that receives unordered values from a
number of processes, is used by the Poligon system to support its Bag data type.

5. Object Oriented Message Passing

The Lamina object programming model is founded on the notion of asynchronously
communicating objects. An object, as used here, is a collection of variables-its state
variables-manipulated by (and only by) a set of procedures-the methods associated with
that object. Objects may be defined within a compiled class inheritance network; the
current implementation uses the inheritance facilities of Flavors [Weinreb 81].

A Lamina object is allocated in local space and is referenced externally by its task stream, a
stream maintained as one of its state variables. This task st,'eam is referred to as the
object's self-stream. It is typically the reference to this stream that is used to represent
an object remotely. The information placed on this stream (that is, provided as its values)
specifies tasks for the object; each unit of information is called a message. A message is
internally structured as a task request posting, whose value consists of a task selector
symbol that identifies the method to execute, along with the associated parametric values
for the execution.

5.1. Computational Flow

As illustrated in Figure 2, the messages arriving on an object's task stream specify tasks to
be performed by that object. Every object has a spawned dispatch process associated with it
that removes and executes each message on its task stream in turn. Tasks usually mutate the
state variables of the object and generate new messages. They have exclusive access to
their environment (i.e., state and temporary variables) during execution.

LAMINA Obiect
Task stream

z~p (methods)
## Asynchronous

m, ~~: ## /message ## message send

State variables .emporary variables
(indefinite extent) (dynamic extent)

Figure 2. Message passing model

Tasks are data driven in that they are started only when all the needed information is
available. Typically, a single message, in conjunction with the object's state variables,
contains all the relevant information for the task execution. Tasks are generally intended to
be accomplished as the stages of pipelines that organize the work performed by the objects
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of the application. In order not to block the pipeline, a task, once started, is run to

completion.

5.2. Providing Atomicity

Although Lamina provides the programmer with a run-to-completion model, there may be
system reasons for preempting a task, for example, to handle a debug trap or because the
task's run quantum has expired. When this occurs, the object does not execute any other
tasks until the preemption is resolved. This prevents other tasks on that object from
gaining access to the environment of the suspended task. However, since other objects
may execute tasks during this tiee, true atomicity can only be enforced if no state is shared
between execution environments. The mechanism by which objects communicate ensures
this.

Lamina objects can never share state because they only communicate by exchanging
messages containing independent copies of local structures. Furthermore, the state
variables of an object are only visible to its own methods and are therefore only accessible
within a private task. Thus the atomicity of operations on an object is preserved even in the
presence of preemptions.

5.3. Sending a Task Request

Sending a task request message in Lamina is non-blocking so as to accommodate pipelined
operations on objects directly. The construct for asynchronously sending a message is
sending, which takes as arguments one or more target task streams, a task selector
symbol, and a list representing the parameters to be provided to the task executions. Since
sending is no more than syntactic sugar for the posting primitive, the sender may provide
additional control or debugging information as described in Section 2.
The value immediately returned by sending is the list of clients supplied. As a convention,
the clients may expect to receive consequent task requests later in the computation.

5.4. Defining Objects

Lamina object types are built upon the base Flavor, Lamina, which defines the instance
variable, Self-Stream that stores its task stream. The default kind of task stream is a
normal unordered stream; the 'mixin' flavors ordered-self-stream and sequenced-
self-stream, are provided to override this default.

5.5. Trigger Methods

The 'top level' methods executed as tasks by Lamina objects are called triggers. They are
defined using the deftrigger form as shown below. The parameter list provided to
lef trigger corresponds to the value (and the other information, which can be optionally

ignored) contained in each posting received on its task (self) stream. In particular, the
parameter specifica,ion may be used to destructure the value provided, as is done in the
example.

5.6. Creating Objects

The form

(creating type initializations for clients on site ...)
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stipulates the creation of a object on the indicated site, or on a randomly selected site if none
is indicated. When the creation has been accomplished, the client streams will receive a
posting whose value is the task stream of the created object.

The initializations are a list of alternating keywords (corresponding to the state variable
names for the object being created) with their initial values. These values are computed in
the context of the object requesting creation. As an example, a creating form is included
in the create-an-object function defined below. The function create-self-stream is
provided to create a stream as defined by the type of the Lamina object being created. This
can be used, as in the example, to create the object's task stream before the actual object has
being created. If the initializations contain the specification : Self-Stream then the object
uses a stream that has been created for it externally by create-self-stream as its self-
stream.

5.7. An Object-Oriented Matrix Manipulation Example

The same matrix manipulation problem as that used above can be recoded in an object-
oriented fashion. We could have a matrix of objects representing the values in each cell of
the matrix and leave it to the objects themselves to solve the sub-components of the
problem, i.e. apply functions such as F and G to the value in the cell.

In this case we declare a class of objects, which we call Function-Executer. Each cell of
the matrix will be represented by an instance of this class. Instances of the class
Function-Executer know about both their location within the matrix and the value in the
cell of the matrix. We will define behavior for this class so that there will be two methods
that are used. The first, called :Update-Value-By-Evaluating-Function, takes a
function its argument and applies it to the value in the cell of the matrix, "ransforming the
value, for example, from x -> f (x). The second method defined is :Exectdte-Procedure,
which is much like the :Update-Value-By-Evaluating-Function except that rather than
updating the value in the cell it merely calls its argument function for any side-effects it
might perform. In our case we use this to print out the result.

First we define the class of objects to use, the means of creating them individually and then
a procedure to create a matrix of them.

Declare the class of object that represents a value and knows
how to execute functions using that value as an argument.

(defflavor function-executer
;;; Instance variables.
(x-coord ;;; The row in the matrix
y-coord ;;; The column in the matrix
value) ;;; The value in this cell of the matrix
(lamina) ;;; Based on the class called "Lamina", a

;;; primitive concurrent object class.
:initable-instance-variables ;;; Used for initialization only.
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(defun create-an-object (flavor x y value)
;;; Creates an object of a specified flavor (class) to represent
;;; the cell x, y in the matrix, at which we find the Value.

(let (stream) ;;; Declare a local variable called Stream
(setf stream (CREATE-SELF-STREAM flavor))
;;; We explicitly create the Self-Stream for this object so
;;; that we can record it in our matrix of objects.
;;; Creates an object of the specified flavor on a random
;;; site with the specified self-stream, initializing the
;;; values of the coord and value instance variables.
(CREATING flavor

;;; A list of initialization arguments for the creation
;;; of the instance
"(:self-stream ,stream :value ,value :x-coord ,x

:y-coord ,y

;;; Return the stream. This is our pointer to the remote
;;; object.
stream

(defun make-example-matrix-of-objects (flavor)
;;; Create a 2 dimensional matrix that is initialized with
;;; function executing objects that represent the numbers 0..8.

(let ((matrix (make-array dimensions)))
(loop for i from 0 below width

do (loop for j from 0 below height
Create an object and put it into the
specified cell in the matrix.

do (setf (aref matrix i j)
(create-an-object flavor i j
(+ (* i 3) j)

;;; Return the matrix.
matrix

Now that we can create our matrix of objects - actually a matrix of remote-addresses to
the self-streams of obects we can define the behavior of the objects by declaring the
methods mentioned above.
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(DEFTRIGGER
(function-executer :update-value-by-evaluating-function)

((function) clients &rest ignore)
Method that tells function-executer objects how to perform the
operation
value := f(value),
where f is the argument Function and Value is the
instance variable denoting the value associated with the
object. The Clients argument is ignored because we execute
this method simply for effect, we do not send any value on to
anyone else.

(ignore clients)
(setf value (funcall function value))

(DEFTRIGGER (function-executer :execute-procedure)
((function) clients &rest ignore)

;; Method that tells function-executer objects how to perform the
;;; operation f(x-coord, y-coord, value), discarding the result of
;;; the operation, where f is the argument Function and x-coord,
;; y-coord and Value are the instance variables denoting the
;; position of the cell in the matrix and the value associated

;;; with the object. The Clients argument is ignored because we
;;; execute this method simply for effect, we do not
;;; send any value on to anyone else.

(ignore clients)
(funcall function x-coord y-coord value)

Now we can define the procedure that tells the individual elements of the matrix to update
themselves by applying the function f-of-g-of-x.

(defun update-matrix-of-objects-f-of-g-of-x (matrix)
;;; Tells each object in the matrix of objects to change the value
;;;that it represents (x) to f(g(x)).

(loop for i from 0 below width ;;; Loop over rows
do (loop for j from 0 below height ;;; Loop over columns

;; Send a message to each cell invoking the
;; :Update-Value-By-Evaluating-Function method.

do (SENDING (aref matrix i j)
:update-value-by-evaluating-function
;;; F-Of-G-Of-X is the function to be
;;; invoked by each object.
'(f-of-g-of-x)

matrix ;;; Return the updated matrix

Now we must specify how to print out the results. This is done in much the same way as
the updating process above.
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(defun print-out-matrix-of-objects (matrix)
;; Tells each object in the matrix of objects to execute the
;; function Print-Out-Rasult on the value it represents.
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
do (SENDING (aref matrix i j) :execute-procedure

'(print-out-result)

Now we declare the bootstrapping harness for the example and execute it.

(defun boot-object-oriented-example-I ()
;;; Starts up the example on processing element (1 1) at time = 0.

(BOOT (at 0 '(l 1)
;;; The following actually executes the example.
(print-out-matrix-of-objects

(update-matrix-of-objects-f-of-g-of-x
(make-example-matrix-of-objects

' function-executer

(boot-object-oriented-example-i) ;;Run the example
o 0 ->2
o 1 ->3

o 2 ->6

1 2 ->27

2 1 ->51
2 2 ->66

1 1 ->18

1 0 ->11

2 0 ->38

Note: in this case we have the results appearing non-deterministically. Strictly speaking this
example will not work properly in the general case, since we cannot guarantee that the
: Update-Va lue-By-Eva luating-Funct ion message's received and processed before the
:Execute -Procedure message for any given cell. We should therefore either recode this

problem so that the combined update and print instruction is sent all at once, or we could
use strictly ordered streams for the messages sent to the cells of the matrix. On the other
hand, we could use the pipelined method shown below.

5.8. A Pipelined Object-Oriented Example.

We could, in contrast to the object oriented implementation above, recast the problem so as
to pipeline the operations to any depth as is shown in this example, which is structurally
much like the last one (See Figure 3). The primary difference is that, instead of each cell of
the matrix in question pointing to a single object that knows how to execute functions, each
cell in the matrix now points to an object which is now at the front of a chain of objects
each of which knows how to execute functions. This allows each element in the chain
(stage in the pipe) to perform a small amount of work and then pass its results, along with
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the instructions about the rest of the work to be performed, to the succeeding elements in
the chain.

Functions applied at pipe stage

g f print

0 1 2f(g (2)

3 4 5

6 17: 81 Pipe Stages Initial value at pipe stage

Figure 3. A Pipelined, Object-Oriented Implementation. Each element
of the matrix points to a pipe of function executing objects (element [0, 2]

shown here). Values pass down the pipe as they are computed and
successive functions are applied to them

In this example we define a new class (flavor) of objects to do the processing, which we
call Pipe-Element. The method :Execute-Pipe-stage is used to accept a list of
functions as its argument and a value. Any one stage in the pipe applies one function to the
incoming value and then passes the resulting value and the remaining functions on to the
next stage in the pipe.

;;; Declare the class of object just like Function-Executer only
; it also has a pointer to the next element in the pipe.
(defflavor pipe-element

;;; Instance variables.
((next-in-pipe nil)) ;;; The next stage in the pipe.

This initialized to the null
value. If we need another
stage in the pipe we will fill
in this slot.

(function-executer) ;;; A subclass of Functon-Executer
:initable-instance-variables ;;; Used for initialization.
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(DEFTRIGGER (pipe-element :execute-pipe-stage)
((incoming-value function-to-apply
&rest further-functions
)

clients &rest ignore

;; Defines a method called :Execute-Pipe-Stage, which is rather
;; like the methods defined above. It updates the Value instance
;; variable by applying a function passed to it as an argument to
,; the coordinates and the value. If the value has not been set
,; yet then this is passed in as an argument also. The arguments
;; to the method also specifies a list of further functions to

,; execute. If this is specified then there are further stages
,; in the pipe to execute. If we have not already created an
;; object for the next stage in the pipe then we do so. We
;, then send the next stage in the pipe the remainder of the work
;' to be performed. In this example, the argument
;, "(incoming-value function-to-apply &rest further-functions)"
;' specifies that the arguments are represented as a list, whose
;, first element is the incoming value with which we are to
;' compute, its second value is the function to execute and any
;' remaining values are kept in a list called further-functions.
;, As we invoke this method on successive stages in the pipe, the
;' function to apply is not passed along to the next stage
;' so that, for stage~n] in the pipe, the function-to-apply is
;- the first element in the list of further-functions for
;, stage[n-l]. When the list of further-functions becomes empty
;; we stop.
(ignore clients)
(setf value (funcall function-to-apply x-coord y-coord

(or incoming-value value)

;;; When there are elements in the list of further-functions
;;; then continue down the pipe.
(when further-functions

;;; Create the next stage in the pipe if we have
;;; not done so yet.
(when (not next-in-pipe)

(setf next-in-pipe
(create-an-object 'pipe-element x-coord y-coord nil)

;;; Send the remaining functions still to be executed
;;; to the next stage in the pipe to deal with.
(SENDING next-in-pipe :execute-pipe-stage

(cons value further-functions)

Now we define two new functions F' (f-primed) and G' (g-primed) which are just like F
and G except they take the x and y coordinates of our cell in the matrix as arguments as
well. Doing this allows us to have all of the functional arguments that are passed to the
different stages in the pipe have the same number of arguments. Enforcing this symmetry
obviates any complications due to making sure that we are calling the functions with the
right number of arguments.
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(defun f.primed (x y value)
;;; Just like the function F, only it is also passed the
;;; coordinate arguments which it ignores.

(ignore x y)
(f value),

(defun g-primed (x y value)
;;; Just like the function G, only it is also passed the
;;; coordinate arguments which it ignores.

(ignore x y)
(g value)

Now we can define the actual functions that get things going;.the top level loop that starts
up the different pipe stages and the bootstrapping harness.

(defun pipe-example (matrix)
;;; Is passed a matrix of objects each of which represents the
;;; head of a pipe. It starts execution by telling each pipe to
;; execute the G-Primed, F-Primed and then the Print-Out-Result

;;; functions in successive stages of the pipe.
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
;;; Send an :Execute-Pipe-Stage message to each
;;; cell in the matrix
do (SENDING (aref matrix i j) :execute-pipe-stage

'(nil g-primed f-primed
print-out-result

matrix ;;; Return the updated matrix

(defun booL-pipelined-object-oriented-example-l ()
;;; Start up a pipe-Lined version of the object matrix example.

(BOOT (at 0 '(1 1)
;;; The following actually executes the example.
(pipe-example

(make-example-matrix-of-objects 'pipe-element)

Now we can actually run the program.
(boot-pipelined-object-oriented-example-l) ;;; Run the example.
S0 ->2

01 ->3
0 2 ->6
1 2 -> 27
2 1 -> 51
2 2 -> 66
1 1 -> 18
1 0 -> ii

2 0 -> 38
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In fact if sve add a loop wround the initial loop, we can continnAly pump va~lues into ihis
nine-wide(3 by 3), tiue-st-gepipc.. If we could ahieve perfec balace in our pipe we
could hope for a speedup of rtue orderof width - heigh <=e-fa-s agezin-
pi;pe>, which in this case= 3 * 3 -3. We can do this with this simple rewrjite to the
pioeB-e7.ar=ie function-

(defun pipe-exarple (=atriz)
(loop do

(loop for i; 5ro= 0 below width ;;; Moo.-p ov.e= rows
do (loop for j ftc= 0 below height

;;; Loop o-.er columns
do (S=-1D;Gr (aref matriz j

:exxecute-oipe-stace
(nil g-prired f-primed
print-out-result

(dismiss) ;;; llow othe= processes on this site to have
;;a look in.

Similarly, because the samwe message is being sent to each stage in the pipe we could, in
fact do this using multicast communication. This involves making a list ofl all of the target
objects and then sending the message. We could therefore rewrite the pi_-pe-ex-am-ple
function above as follows:

(defun pipe-example (matrix)
(loop for targets =

(loop for i from 0 below width
;;; Loop over rows gluing the lists together.
append (loop) for j from 0 below height

Loop over columns, collecting
uo the elements.

collect (aref matrix i j)

do (SENDING targets :execute-pipe-stage
'(nil g-primed f-primed print-out-result)

(dismiss) ;;Allow other processes on this site to have
a look in.

5.9. An Object-Oriented, Pipelined example with Final Synchronization.

Now, let us consider the problem of wanting to coiasolidate all of the results from our
computations. It may not be of any use to us to create a bet of pipes with useful values at
their ends. We need to return a matrix of values, and perhaps print it out. For this we
create a new object, which we call the collector, wvhich both starts the process and is the
eventual target for the results that are computed.

To do this we create a new flavor called collector of which we only create one instance, the
collector itself. The collector knows how to handle two types of message; :start and
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: rr-d-su- The: at method is imvoked when the plogram is booted, is firs up eah
of ,-h pipes for the matrix- The etumred-rcsult is invoked by each pipe when it has got to
th e "d of its pvcessiag. The iemwed-result notifies the cllector object of th xesult and,
when enos*g zmsuts inve been -uulatedw t answers are printed oIIL

;;; Defi-es a class cal-led Collector of which we wil only
; =ake one irstance.
!defflavor collector

;;; Instance var-ables.
(Matrix ;;; The =atrix of pipes
answers-outst an.ing

;;; Ve nu-ber of reolies we are still excecting
answers ;;; A catrix of answers.

)
(function-executer)
;; Based on the class Function-Executer-

(DET-GGER (collector :start) (argents clients &rest ignore)
-; Defines a =ethod called :Start, which stars off the process,
; creating the =atrix of pines and a matrix in which to store
;; the results as they co>- in - The instance variable
--- -nswers-Outstanding is initialized to the number of answers

that we are expecting. It will be decremented as each
;.. result co=es in and when this hits zero we will print out

the resulting table. The pipes are started off executing
the method :ExYecute-Pipe-Stage-Finally-Returning-Answer
(defined below), which is a modified version of the

;;; :Execute-Pipe-Stage -method defined above. Note: the
argument ":For self-stream" means that we are passing the
self-stream of the collector object as an explicit client
to each of the pipes. This is the stream that will be
used to notify the collector of the results as they are

; co=puted.
(ignore clients arguments)
(setf matrix (make-example-matrix-of-objects 'pipe-element))
(setf answers (make-array '(3 3)))
(setf answers-outstanding 9)
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
do (SENDING (aref matrix i j)

:execute-pipe-stage-finally-returning-answer
'(nil g-primed f-primed)
:for self-stream

4
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(DEFTRIGGER (collector :returned-result)
((i j result) clients &rest ignore)

;;; Defines a method called :Returned-Result. This is invoked
;;; when the pipe has finished executing its work. It stores
;;; the result away in-the appropriate slot in the answers
;;; matrix and decrements the answers-outstanding counter
;;; so that when we hit zero we will print out the results.

(ignore clients)
(setf (aref answers i j) result)
(setf answers-outstanding (- answers-outstanding 1))
(when (= answers-outstanding 0)

(print-out-matrix answers)
)

)

Now that we have fully specified the behavior of the collector we can add the extra
necessary behavior to the pipe elements. In this case we simply add a new method called
:execute-pipe-stage-finally-returning-answer, which is pretty much like the
:execute-pipe-stage method declared above only when we get to the end of the pipe
and there are no more functions to execute we send a : returned-result message to the
collector object which is passed down the pipe as the client of the computation.

(DEFTRIGGER
(pipe-element :execute-pipe-stage-finally-returning-answer)

((incoming-value function-to-apply
&rest further-functions

clients &rest ignore
)

;;; Defines a method called
;;; :Execute-Pipe-Stage-Finally-Returning-Answer which
;;; acts just like :Execute-Pipe-Stage, only when it runs out
;;; of things to do at the end of the pipe it returns the
;;; resulting value to the collector object, which is passed
;;; in as a client. Computes the new value for the Value
;;; instance variable by applying the functional argument.

(setf value (funcall function-to-apply x-coord y-coord
(or incoming-value value)

(if (not further-functions)
Then we have got to the end of the pipe.
Return the result to the collector object (clients).

(SENDING clients :returned-result
(list x-coord y-coord value)

Else maybe create the next stage in the pipe and
tell if what to do.

(when (not next-in-pipe)
(setf next-in-pipe

(create-an-object 'pipe-element x-coord y-coord nil)

(SENDING next-in-pipe
:execute-pipe-stage-finally-returning-answer
(cons value further-functions) :for clients
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Now all that we need do is declare the top level functions that start things off. These
consist of a simple function that creates the collector object and sends it a :start
message and the bootstrapping harness.

(defun create-and-start-collector ()
;;; Creates the initial collector object and sends it a
;;; :start message to get the ball rolling.

(let ((collector-stream (CREATE-SELF-STREAM 'collector)))
(CREATING 'collector "(:self-stream ,collector-stream))
(SENDING collector-stream :start nil)

)

(defun boot-pipelined-object-oriented-example-2 ()
;; Start up a pipe-lined version of the object matrix

; example with synchronization at the end.
(BOOT (at 0 '(1 1)

;;; The following actually executes the example.
(create-and-start-collector)

(boot-pipelined-object-oriented-example-2) ;;; Run the example

5.10. Implicit Continuations

For Lamina objects, continuations of a computation are often some explicit trigger method
of some explicit object. There are cases, however, in which it is inconvenient to create an
explicit name for a continuation. As a syntactic construct, execution of a continuation of a
computation can be specified to occur in the context of an executing object (as defined by
its set of state variables and the environment of the continuation) each time that postings
have been received orn some given streams. The execution spawning the continuation is
finished normally and then the next operation to be done on the object is taken from its task
stream without delay. Thus Lamina objects can be viewed as monitors [Andrews 83]
(because the independently atomic operations on objects give the required mutual
exclusion) but operations on them are unnested. This is done to facilitate pipelined
operation: task request postings queued for operation on an object are not deferred for a
pending continuation.

The construct

(with-postings stream-bindings form)

creates an implicit continuation in the context of an object. The stream-bindings is a list,
each element of which is a list of a binding-pattern and a stream. Each of the postings on
the indicated streams (including the posting clients, tag, key, origin, and properties) will be
destructured and bound to a corresponding variable identifier according to the associated
binding-pattern. These variables and associated values are also part of the execution
environment of the continuation.

As an example of the use of with-postings, consider the examplc shown below. It uses
nested with-postings constructs to create continuation closures that first create and collect
pairs of lamina objects and then distribute requests on an input stream to the collected
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triples in a round robin fashion. Note that instance variables may be accessed by the
continuations.

(DEFTRIGGER (distributor :start-servers) ((count input-stream))
; Round robin distribution of input requests to created
; server pairs"

(let ((servers nil)
(as (CREATING 'a '() for (NEW-STREAM)

on (RLNDOM-SITES count)))
(bs (CREATING 'b '() for (NEW-STREAM)

on (RANDOM-SITES count))))
(WITH-POSTINGS ((a as) (b bs))

(cond
((null servers) ; first invocation of continuation
(setf servers (circular-list (list a b))) ; single elt
(WITH-POSTINGS ((request input-stream))

;;; start distributor
(SENDING (pop servers) :request request))) ; multicast

(:else ; other invocations, upto count
(push (list-a b) (cdr servers)))))))

Figure 4. Continuation Closures. [1] References for streams on which
responses are expected are sent in task request postings to other objects as
places to supply response postings. [2) Intermediate variables (that is, the
environment) and a pointer to a block of code required to execute the form
wrapped in a with-postings construct are captured in a continuation

closure, attached to a stream, and linked to the stream(s) on which
responses areexpected. [3] When all required postings become available on
these streams, [4] the response postings together with the closure are sent to

the task stream of the object that generated the closure. The closure is
executed (in its turn) atomically within the context of the object and lexical
environment of the form. Variable bindings are made as specified to the
elements of the available response postings. Note that the execution that

spawned execution of the closure and the execution so spawned are
independently atomic. The state variables of the object and any structures
they reference can be changed by some other operation taken from the task
stream between the two executions. The syntactic convenience is only that:
invariants that need to be preserved across independent executions need to
be met at the boundaries between the execution that spawned execution of

the closure and the execution so spawned.

The implicit continuation will be executed atomically with respect to any other operations
on the indicated object and in the context of its state variables and the lexical environment in
which the form appears. A schematic of the mechanism supporting implicit continuations in
objects is shown in Figure 4.

5. 11. Lamina Objects and Actors

The Lamina object model is similar to Actors [Hewitt 73], in that message arrival triggers
computation and message arrival order is non-deterministic. However, it departs from
Actors in a number of ways, primarily by trading off flexibility for efficiency.

Not everything is an object. Predefined data types such as numbers, symbols,
arrays and cons cells exist as primitives, and operations on them do not entail
message-passing. Although structures are passed by copying, they are locally
mutable.
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" Streams are first-class entities independent of objects. Objects may establish
communications over streams other than their task streams. Streams may also be
shared between objects as described in Section 2.

* The default operation of a Lamina object is serial command execution. For serial
execution sequences, stack allocation of dynamically allocated structures can be
used where the compiler can determine that references to the structures have
dynamic extent.

" Mutation is explicit. Unlike actors, Lamina objects do not deal with state changes
by specifying a replacement [Hewitt 73] actor for themselves, but rather explicitly
manipulate their own state variables through assignment.

" Although structures are passed by copying, they are locally mutable. Tasks may
change them and pass the changed structure to some other object. The copying
done to transmit the structure will occur asynchronously with method execution.

" Finally, Lamina relies on compiled inheritance for method combination rather than
upon runtime delegation, and it does instantiation by compiled template rather than
by copying a selected instance with specified exceptions.

6. Shared Variables

Shared variables in Lamina are cells that are managed by a memory controller and whose
associated value may be mutated. Tamina also supports shared data pairs ('conses') and
arrays. A shared variable reference is constructed, accessed, and mutated by the interface
operations described in this section. For all these operations, execution is deferred and no
other executions are performed by the initiating processor until the indicated operation is
accomplished.'

Shared queues (which are modelled using streams) are also provided. These queues are
maintained in a processor's local memory. When a process reads from a shared queue, it is
halted and descheduled; execution is resumed when the requested data arrives.

6. 1. Creating and Accessing Shared Variables

A single shared variable can be allocated and initialized using the shaled-variable
operator, that takes as a required argument the initial value for the shared variable, and
creates and returns a reference to a cell containing the indicated value. The value of the cell,
in general, must be a self-referential datum or a dynamic or static reference.

An optional argument can be used to specify a memory site at which to allocate the cell; if it
is omitted, a randomly selected memory site is chosen. Alternatively, the macro (in-
memory site-identifier ... ) can be used to specify a default site for all allocations
(for simple as well as structured shared variables) performed within its dynamic scope.

Once a shared variable has been allocated, the following constructs may be used to access
or alter its value:

1Note that, because the simulator is executing in a uniprocessor environment, a stack must be maintained
for each deferred execution. Thus executions must be resumable (not merely restartable) to use the shared
variable Lamina interface. This is discussed in Section 2.
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" (shared-read cell) retrieves the value of the referenced cell.

" (shared-write cell value) modifies the value of the referenced cell. The new
value is returned.

(shared-exchange cell value) performs the same function as shared-write,
except that the prior value of the reference is returned. This exchange is atomic.

(shared-replace-conditional cell old new) atomically compares the
contents of the referenced cell with old, and, if they are identical, replaces the
contents with new.

For each of these constructs, the operation is guaranteed to be completed before execution
is resumed.

6.2. Shared Data Structures

Lamina also provides support for shared data structures, namely shared pairs and shared
arrays. Shared pairs form the foundation of linked data structures such as lists and graphs.

The constructor
(shared-cons car-value cdr-value)

creates and initializes a shared pair, returning a reference to it. The accessors are, naturally,
shared-car and shared-cdr, while the mutators are shared-rplaca and shared-
rplacd. Also, the form

(cache-shared-pair shared-pair-reference)

may be used to make a local, that is, non-shared, copy of a shared pair in local space.

The form

(shared-array dimension.-)

returns a reference to a shared array. The dimensions argument is a list of positive
integers, denoting the size of each dimension of the array. There are optional :initial-
element and : initial-contents keyword arguments, which may be used, respectively,
to initialize all the elements of the array to the single value specified or to initialize each
element of the array to the value of the corresponding element in a list or a list of lists.
Shared arrays are initialized to nil by default.

The accessor shared-aref reads elements of the shared array. The mutator shared-aset
writes array elements. Both operations are bounds-checked against the dimensions of the
array. Finally, the cache-shared-array function returns a local (non-shared) copy of the
referenced shared array, while fill-shared-array copies data from a local array into a
shared array.

6.3. Shared Queues

A shared queue construct, which is implemented as a Lamina stream, is also provided.
Shared queues are managed by a processor which provides atomic access #o the queue and,
when the queue is empty, maintains a FIFO queue of processes requesting ata from it; the
requests are serviced when data is added to the queue. Further, whenever a process
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attempts to remove data from the queue, the process is descheduled; execution is
rescheduled when the requested data arrives.

Shared queues are created by the shared-queue function, which takes one optional
argument representing the queue's tag, which may be used for debugging. Items may be
added to the queue with the shared-enqueue function. The shared-dequeue function
removes and returns the top item of the queue, while the shared-queue-top function
merely returns it2. A shared-queue-p predicate is also provided to test whether an item
is a shared queue.

Unlike other shared variable operations, accesses to shared queues do not cause the
initiating processor to stall waiting for completion. A process executing shared-enqueue
continues immediately, without waiting for the data to arrive on the queue. A process
which accesses a queue, using shared-dequeue or shared-queue-top, will be halted
and descheduled. Execution is rescheduled when the data arrives, but the initiating
processor may perform other executions in the meantime.

6.4. Other Synchronization

A simple spin lock is provided for busy-wait synchronization. A lock is implemented as a
cell that is initialized to a value other than nil, and and the atomic exchange operation is
used to set and clear'it. The form

(wirh-spin-lock lock form)

executes the given form after acquiring the referenced lock; subsequently, the lock is
released and the value produced by the execution of the form is returned.

Such a synchronization operator might be used in incrementing a shared counter as in3

(defun locked-increment (<counter> <lock> &optional (delta 1))
(WITH-SPIN-LOCK <lock>

(SHARED-WRITE <counter> (+ (SHARED-READ <counter>) delta))))

Locks can also be constructed from shared queues, as is done by Lamina to implement
mutual exclusion locks. To release the lock, a process places a token reference on the
queue. A process acquires the lock by removing the token-any other process which
attempts to remove it will be blocked until the owner of the lock replaces the token.
Alternatively, reading but not removing the token (by using shared-queue-top) allows
more than one process to be resumed. This last approach more closely resembles the type
of synchronization provided by signalling and waiting on condition variables in a monitor.

Figure 5 shows an example of using some of these synchronization schemes in generating
a closure to perform operations on a shared buffer realized as a shared variable array4

Processes first gain access to the shared array by spinning on a lock. Once access is

21n the current implementation, only FIFO queues are provided, and (in order to maintain a consistent
timing model for cross address space transmissions) only shared variable or shared queue references may be
placed on a shared queue.
3By convention, references to shared variables and shared queues are denoted by enclosing angle brackets, as
in <lock>.
4The astute reader will note that the closure environment itself is not explicitly represented as shared; this Is
a modelling convenience due to the fact that the environment is not modified during the lifetime of the
closure.
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granted, items are inserted or removed. An attempt to put information in a full buffer
returns nil. When an attempt is made to remove data from an empty buffer, a shared
queue (rather than data) is returned; the requesting process may then wait for something to
be placed on this queue by executing shared-queue-top.

(defun SHARED-BUFFER (size)
(let ((<signal> (SHARED-QUEUE ':signal))

(<empty> (SHARED-VARIABLE t))
(<lock> (SHARED-VARIABLE t))
(<buffer> (SHARED-ARRAY size :initial-element nil))
(<head> (SHARED-VARIABLE 0))
(<tail> (SHARED-VARIABLE 0)))

#' (lambda (operation &optional value)
(WITH-SPIN-LOCK <lock>

(let* ((head (SHARED-READ <head>))
(tail (SHARED-READ <tail>)))

(ecase operation
(:insert
(let ((new-tail (mod (1+ tail) size)))

(if (= head new-tail)
nil
(progl

t
(SHARED-ASET value <buffer> tail)

(when (SHARED-READ <empty>)
(SHARED-WRITE <empty> nil)
(SHARED-ENQUEUE <signal> <signal>))

(SHARED-WRITE <tail> new-tail)))))
(:remove (if (not (= head tail))

(let ((new-head (mod (1+ head) size)))
(SHARED-WRITE <head> new-head)
(SHARED-AREF <buffer> head))

(unless (SHARED-READ <empty>)
(SHARED-WRITE <empty> t)
(SHARED-DEQUEUE <signal>))))) ))))))

Figure 5. LAMINA Shared-variable synchronization mechanisms used
to define a shared buffer.

6.5. Shared Variable Matrix Manipulation

Now, let us consider the same sort of problem as we have already shown in serial, object-
oriented and functional-programming forms being addressed with the use of the shared
variable Lamina constructs. In this example we will have our matrix of values in the
system's shared memory. We will create one process for each stage in the process (f (x),
g (x), print (x)) and will make these processes pipe-line their execution. To do this we
will use a pair of auxiliary tables, a lock table with one lock for each cell in the matrix being
processed and a status table, which will specify for each cell in the matrix what point it has
got to in the computation. For example, when the status table contains the token :F for a
particular cell, we know that the F operation is now legal on this cell.

First, we define the appropriate versions of the f, g and print functions. Each of these waits
to grab the lock on the particular cell and, having got it, updates the matrix and the status
table so that the next stage can take over.
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(defun f-ify (matrix lock-table status-table i j)
Applies the function F to a cell in the matrix after
grabbing the lock for that cell. It then updates the status
table so that the print operation is legal.

(with-spin-lock (shared-aref lock-table i j)
(setf (shared-aref matrix i j) (f (shared-aref matrix i j)))
(setf (shared-aref status-table i j) :print)

(defun g-ify (matrix lock-table status-table i j)
Applies the function G to a cell in the matrix after grabbing
the lock for that cell. It then updates the status table so
that the F operation is legal.

(with-spin-lock (shared-aref lock-table i j)
(setf (shared-aref matrix i j) (g (shared-aref matrix i j)))
(setf (shared-aref status-table i j) :f)

(defun print-ify (matrix lock-table status-table i j)
Applies the function Print-Out-Result to a cell in the
matrix after grabbing the lock for that cell. It then
updates the status table so that the G operation is once

;;; more legal.
(with-spin-lock (shared-aref lock-table i j)

(print-out-result i j (shared-aref matrix i j))
(setf (shared-aref status-table i j) :g)

We now define the functions that are to be executed at the top level of each of the
processes. We have one that applies the F function (f-ifies), one that prints and a G-ifier.
In these functions we step through the matrix waiting until the appropriate status code
appears. When we have the right status code for a particular cell we update the cell.

(defun f-ifier (matrix lock-table status-table)
The top level function for the process that performs
the F function.

(loop for i from 0 below width ;;; Loop over rows
do (loop for j from 0 below height ;;; Loop over columns

;;; Loop until we get the right status code.
;; Dismiss is called so that we can be preempted

;;; by any other processes on this site.
do (loop until

(equal :f (shared-aref status-table i j))
do (dismiss)

;;; Perform the F transformation to the
;;; matrix cell.
(f-ify matrix lock-table status-table i j)
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(defun g-ifier (matrix lock-table status-table)
;;; The top level function for the process that performs
,;; the G function.

-(loop for i from 0 below width ;;; Loop over rows
do (loop for j from 0 below height ;;; Loop over columns

,;; Loop until we get the right status code.
;;; Dismiss is called so that we can be preempted
;;; by any other processes on this site.
do (loop until

(equal :g (shared-aref status-table i j))
do (dismiss)

;;; Perform the G transformation to the
,;; matrix cell.
(g-ify matrix lock-table status-table i j)

(defun print-ifier (matrix lock-table status-table)
;; The top level function for the process that prints out

;;; the results.
(loop for i from 0 below width ;;; Loop over rows

do (loop for j from 0 below height ;;; Loop over columns
,;; Loop until we get the right status code.
;; Dismiss is called so that we can be preempted

,;; by any other processes on this site.
do (loop until

(equal :print (shared-aref status-table i j))
do (dismiss)

,;; Print out the result for this cell.
(print-ify matrix lock-table status-table i j)

Now we can define the functions that will create and initialize the three shared matrices.

(defun make-shared-example-matrix ()
,;; Create a 2 dimensional matrix that is initialized
,;; with the numbers 0..8.

(let ((matrix (shared-array dimensions)))
(loop for i from 0 below width

do (loop for j from 0 below height
do (setf (shared-aref matrix i j)

(+ (* i 3) j)

,;; Return the matrix
matrix
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(defun make-shared-lock-table ()
;;; Create a 2 dimensional matrix of locks.

(let ((matrix (shared-array dimensions)))
(loop for i from 0 below width

do (loop for j from 0 below height
do (setf (shared-aref matrix i j)

(shared-variable t)

Return the matrix
matrix

(defun make-shared-status-table ()
;;; Creates the shared status table.

(shared-array '(3 3) :initial-element :g)

Now we define the function that launches the three processes and creates the three shared
matrices.

(defun start-shared-pipe ()
;;; Starts up the shared-variable pipe-line process.
;; First it creates the shared matrices described above each
;; in a random shared memory.
;; Then it mounts the three processes executing the

;;; F, G and Print operations.
(let ((matrix

(in-memory (RANDOM-MEMORY)
(make-shared-example-matrix)

(lock-table
(in-memory (RANDOM-MEMORY) (make-shared-lock-table))

(status-table
(in-memory (RANDOM-MEMORY) (make-shared-status-table))

(mounting
#'(lambda 0) (g-ifier matrix lock-table status-table))
on (RANDOM-SITE)

(mounting
#' (lambda () (f-ifier matrix lock-table status-table))
on (RANDOM-SITE)

(mounting
#'(lambda () (print-ifier matrix lock-table status-table))
on (RANDOM-SITE)
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(defun mount-start-shared-pipe ()
;;; The top level function used to start things off.
;;; This is needed because the CARE system requires that shared
;;; memory be allocated by a mounted (fully-fledged) process.

(mounting #' start-shared-pipe on (RANDOM-SITE))

(defun boot-shared-pipe-example ()
;;; Boot the shared-pipe example on processing element (1 1)
;;; at time = 0.

(BOOT (at 0 '(1 1)
;;; The following actually executes the example.
(mount-start-shared-pipe)

(boot-shared-pipe-example)

7. Conclusions

In this paper we have presented Lamina, a powerful programming model that allows the
development and investigation of the performance of concurrent software using multiple
programming metaphors, namely Object-Oriented, Shared-Variable and Functional-
Programming styles.

We have shown that each of these three popular programming models can be implemented
with the use of a single underlying system construct, the stream, which can be used either
as a communication medium for a message passing programming style or to implement
support for programming styles that use "promises" for (possibly infinite sequences of)
values.

Lamina has been used extensively in the development of numerous programs, particularly
in developing real-time concurrent expert system applications as part of the Advanced
Architectures Project.
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Abstract

The cAos system is a framework designed to facilitate the development of highly concurrent real-
time signal interpretation applications. It explores the potential of multiprocessor architectures to
improve the performance of expert sysems in the domain of signal interpretation.

cAOS is implemented in Lisp on a (simulated) collection of processor-memory sites, linked by a
high-speed communications subsystem. The "virtual machine7 on which it depends provides remote
evaluation and packez-based message exchange between proc , using virtual circuits known as
streams- To this presentation layer, cAos adds (1) a flexible process scheduler, and (2) an object-
centered notion of ageuts, dynamically-instantiable entities which model interpreted signal features.

This report documents the principal ideas, progrimming model, and implementation of CAos.
A model of real-time -ignal interpretation, based on rz4:cated "abEtraction" pipelines, is presented.
For some applications, this model offers a means by large numbers of processors may.be utilized
without introducing synchronization-necessitated software bottlenecks.

The report concludes with a description of the performance of a large cAoS application over
various sizes of multiprocessor configurations. Lessons about problem decomposition grain size,
global problem solving control strategy, and appropriate services provided to CAOs by the underlying
architecture are discussed.
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Chapter 1

Introduction and Overview

This report documents the cAos system, a portion of a recent experiment investigating the potential
of highly concurrent computing architectures to enhance the performance of expert systems. The
experiment focuses on the migration of a portion of an existing expert system application from a
sequential uniprocessor environment to a parallel multiprocessor environment. 1

The application, called ELINT, is a portion of a multi-sensor information fusion system, and was
written originally in AGE[2], an expert system development tool based on the blackboard paradigm.
For the purposes of this experiment. ELINT was reimplemented in CAOS, an experimental concurrent
blackboard framework based on the explicit exchange of messages between blackboard agents.

CAos, in turn, relies on services provided by the underlying machine environment. In the present
set of experiments, the environment is a simulation of a concurrent architecture, called cARE [5].
CARE simulates a square grid of processing nodes, each containing a Lisp evaluator, private memory,
and a communications subsystem; message-passing is the only means of interprocessor communica-
tion.

CAOS is principally an operating system, controlling the creation, ;nitialization, and execution
of independent computing tasks in response to messages received from other tasks. Figure 1.1
illustrates the relationship between the various software components of the experiment.

The fcllowing chapter briefly describes the salient features of the CARE environment. Chapter 3
disusses the ideas behind the CAos framework. Chapter 4 summarizes the CAOS programming
environment, and Chapter 5 describes its implementation. The final chapter details the results of
our experiments. Finally, Appendix A contains a simple CAos example, and Appendix B presents
a detailed, low-level look at the implementation of CAOS.

I This research was supported by DARPA Contract F30602-85-C-0012. NASA Ames Contract NCC 2-220-Si. and

Boeing Contract W266875. Eric Schoen was supported by & fellowshup from NL Industries.
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Figure 1.1: The relationship between ELINT, CARE, and CAos

4-436



Chapter 2

An Overview of CARE

CARE is a highly-pararneterized and well-instrumented multiprocessor simulation testbed, designed
to aid research in alternative parallel architectures. It runs executes within Helio, a hierarchical,
event-driven simulator which has been described elsewhere [3].

A typical CARE architecture is a grid of processing sites, interconnected by a dedicated communi-
cations network. For example, the research discussed in this paper was performed on square arrays
of hexagonally connected processors (e.g., each processor is connected to six of its eight nearest
neighbors, excluding processors at the edges of the grid).

Each processing site consists of an evaluator, a general-purpose processor/memory pair, and
an operator a dedicated communications and process scheduling processor which shares memory
with the evaluator. Application-level computations take place in the evaluator, a component which
is treated as a "black box" Lisp processor. No portion of its interior is simulated; the host Lisp
machine serves as the evaluator in each processing site. The operator performs two duties. As a
communications processor, it is responsible for routing message: between processing sites. As a
scheduling processor, it queues application-level processes for execution in the evaluator (we discuss
the scheduling mechanism in greater detail below). The operator is simulated and instrumented in
great detail.

CARE allows a number of parameters of the processor grid to be adjusted. Among these param-
eters are: the speed of the evaluator, the speed of the communications network, and the speed of
the process-switchi.g mechanism. By altering these parameters, a single processor grid specification
can be made to simulate a wide variety of actual multiprocessor architectures. For example, we can
experiment with the optimal level-of-granularity of problem decomposition by varying the speed of
both process-switching and communications.

Finally, CARE provides detailed displays of such information as evaluator, operator, and com-
munication network utilization, and process scheduling latencies This instrumentation package
informs developers of CARE applications of how efficiently their systems make use of the simulated
hardware.
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2.1 The CARE Programming Model

cAR programs are made up of processes which communicate by exchanging messages. Messages
flow across streams, virtual circuits maintained by CARE. The following services are used by cAos:

New Process: Creates a new process on a specified site, running a specified top-evel function. A
new stream is returned, enabling the "parent" of the process to communicate with its "child."
Pointers to the stream may be exchanged freely with other known processes on other sites.

New Stream: Creates a new stream whose target is the creating process.

Poet Packot: Sends a message across a specified stream to a remote process.

Accept Packet: Returns the next message waiting on a specified stream. If no mesage is waiting
when this operation is invoked, the invoking process is suspended and moved into the operator
to await the arrival of a mesage.

Memory in each processing site is private. Ordinarily, intra-memory pointers may not be ex-
changed with processes in other sites. However, any pointer may be encapsulated in a remote-
address, and may then be included in the contents of a message between sites. A remote address
does not permit direct manipulation of remote structures; instead, it allows a process in one site to
produce a local copy of a structure in another site.

Scheduling on & CARE node is entirely cooperative, and is based on message-passing. The menage
exchange primitives post-packet and accept-packet form the basis of process scheduling. A
process wishing to block (yield control of the evaluator) does so by calling accspt-packet to wait
for a packet to arrive on a stream. The application program's scheduler awakens the process by
calling post-packet to send a packet to the stream. The process is placed on the queue of processes
waiting for the evaluator, and eventually regains control. The CAOS scheduler, which we describe
in Section 5.3, is implemented in terms of this paradigm.

4-438



Chapter 3

The CAOS Framework

CAOS is a framework which supports the execution of multi-processor expert systems. Its design
is predicated on the belief that future parallel architectures will emphasize limited communication
between processors rather than uniformly-shared memory. We expected such an architecture would
favor coarse-grained problem decomposition, with little or no synchronization between processors.
CAOS is intended for use in real-time data interpretation applications, such as continuous speech
recognition, passive radar and sonar interpretation, etc [7,11].

A CAos application consists of a collection of communicating agents, each responding to a number
of application-dependent, predeclared messages. An agent retains long-term local state. Further-
more, an arbitrary number of processes may be active at any one time in a single agent.

Whereas the uniprocessor blackboard paradigm usually implies pattern-directed, demon-
triggered knowledge source activation, CAOs requires explicit messaging between agents; the costs
of automatically communicating changes in the blackboard state, as required by the traditional
blackboard mechanism, could be prohibitively expensive in the distributed-memory multiprocessor
environment. Thus, CAOS is designed to express parallelism at a very coarse grain-size, at the
level of knowledge source invocation in a traditional uniprocessor blackboard system. It supports
no mechanism for finer-grained concurrency, such as within the execution of agent processes, but
neither does it rule it out. For example, we could easily imagine the methods which implement the
messages being written in QLisp (8], a concurrent dialect of Common Lisp.

3.1 The Structure of CAOS Applications

A CAos application is structured to achieve high degrees of concurrency in two principal manners:
p:pehnrng and repication. Pipelining is most appropriate for representing the flow of information
between levels of abstraction in an interpretation system, replication provides means by which the
interpretation system can cope with arbitrarily high data rates.
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3.1.1 Pipelining

Pipelining is a common means of parallelizing tasks through a decomposition into a linear sequence
of independent stages. Each stage is assigned to a separate processing unit, which receives the
output from the previous stage and provides input to the next stage. Optimally, when the pipeline
reaches a steady-state, each of its processors is busy performing its assigned stage of the overall
task.

CAos promotes the use of pipelines to partition an interpretation task into a sequence of inter-
pretation stages, where each stage of the interpretation is performed by a separate agent. As data
enters one agent in the pipeline, it is processed, and the results are sent to the next agent. The data
input to each successive stage represents a higher level of abstraction.

Advantages of Pipelining

Sequential decomposition of a large task is frequently very natural. Structures as disparate as
manufacturing assembly lines and the arithmetic processors of high-speed computing systems are
frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of mech-
anism (that is, machinery, processing hardware, knowledge, etc). In an optimal pipeline of n pro,-
ceasing elements, element I is performing work on task t + n - 1 when element 2 is working on task
t + n - 2, and so on, such that element n is working on task t. As a result, the throughput of the
pipeline is n times the throughput of a single processing element in the pipeline.

In the case of CAos applications, the individual agents which compose an interpretation
"pipeline" are themselves simple, but the overall combination of agents may be quite complex.

Disadvantages of Pipellning

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear sequence
of subtasks. Some stage of the sequence may depend not only on the results of its immediate
predecessor, but also on the results of more distant predecessors, or worse, some distant successor
(e.g., in feedback loops). An equally disadvantageous decomposition is one in which some of the
processing stages take substantially more time than others. The effect of either of these conditions
is to cause the pipeline to be used less efficiently. Both these conditions may cause some processing
stages to be busier than others; in the worst case, some stages may be so busy that other stages
receive no work at all. As a result, the n-element pipeline achieves less than an n-times increase in
throughput. We discuss a possible remedy for this situation in the following section.

3.1.2 Replication

Concurrency gained through replication is ideally orthogonal to concurrency gained through pipelin-
ing. Any size processing structure. from individual processing elements to entire pipelines, is a
candidate for replication. Consider a task which must be performed on average in time t, and a
processing structure which is able to perform the task in time T, where T > t. If this task were
actually a single stage in a larger pipeline, this stage would then be a bottleneck in the throughput of
the pipeline. However, if the single processing structure which performed the task were replaced by

4-440



T/t copies of the same processing structure, the effective time to perform the task would approach
t, as required.

Advantages of Replication

The advantages of replicating processing structure to improve throughput should be clear; n times
the throughput of a single processing structure is achieved with n times the mechanism. Replication
is more costly than pipelining, but it apparently avoids problems ,ssociated with developing a
pipelined decomposition of a task.

Disadvantages of Replication

Our works leads us to believe that such replicated computing structures are feasible, but not with-
out drawbacks. Just as performance gains in pipelines are impacted by inter-stage dependencies,
performance gains in replicated structures are impacted by inter-structure dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the

actions of a particular stage in the pipeline affects each copy of itself in the other pipelines. In an

expert system, for example, a number of independent pieces of evidence may cause the system to

draw the same conclusion, the system designer may require that when a conclusion is arrived at inde-

pendently by different means, some measure of confidence in the conclusion is increasd accordingly.

If the inference mechanism which produces these conclusions is realized as concurrently-operating

copies of a single inference engine, the individual inference engines will have to communicate between

themselves to avoid producing multiple copies of the same conclusions. A stringent consistency re-
quirement between copies of a processing structure decreases the throughput of the entire system,

since a portion of the system's work is dedicated to inter-system communication.

3.2 An Example

We close this chapter by describing the organization of ELINT, illustrating the benefits and drawbacks
of the CAOS framework applied to this problem. ELINT is an expert system whose domain is the

interpretation of passively-observed radar emissions. Its goal is to correlate a large number of radar

observations into a smaller number of individual signal emitters, and then to correlate those emitters
into -, yet smaller number of clusters of emitters. ELINT is meant to operate in real time; emitters
and clusters appear and disappear during the lifetime of an ELINT run. The basic flow of information
in ELINT is through a pipeline of the various agent types, which we now describe in detail.

Observation Reader

The observation reader is an artificat of the simulation environment in which ELINT runs. Its purpose

is to feed radar observations into the system. The reader is driven off a clock; at each tick (I ELINT

"time unit"), it supplies all observations for the associated time interval to the proper observation

handlers. This behavior is similar to that of a radar collection site in an actual ELINT setting.
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Observation Handler

The observation handlers accept radar observations from associated radar collection sites (in the
simulated system, the observations come from the observation reader agent). There may be a large
number of observation handlers associated with each collection site. The collection site chooses to
which of its many observation handlers to pass an observation, based on some scheduling criteria
such as random choice or round-robin.

Each observation containc an externally-assigned number to distinguish the source of the obser-
vation from other known sources (the observation id is usually, but not always, correct). In addition,
each observation contains information about the observed radar signal, such as its quality, strength,
line-of-bearing, and operating mode. The observation does not contain information regarding the
source's speed, flight path, and distance; ELINT will attempt to determine this information as it
monitors the behavior of each source over time.

When an observation handler receives an observation, it checks the observation's id to see if it
already knows about the emitter. If it does, it passes the observation to the appropriate emitter
agent which represents the observation's source. If the observation handler does not know about the
emitter, it asks an emitter manager to create a new emitter agent, and then passes the observation
to that new agent.

Emitter Manager

There may be many emitter managers in the system. An emitter manager's task is to accept
requests to create emitters with specified id numbers. If there is no such emitter in existence when
the request is received, the manager will create one and return its "address" to the requesting
observation handler. If there is such an emitter in existence when the request is received, the
manager will simply return its address to the requestor. This situation arises when one observation
handler requests an emitter than another observation handler had previously requested.

The reason for the emitter manager's existence is to reduce the amount of inter-pipeline de-
pendency with respect to the creation of emitters. When ELINT creates an emitter, it is similar
to a typical expert system's drawing a conclusion about some evidence; as discussed above, ELINT
must create its emitters in such a way that the individual observation handlers do not end up each
creating copies of the same emitter. Consider the following strategies the observation handlers could
use to create new emitters:

1. The handlers could create the emitters themselves immediately. Since the collection site
may pass observations with the same id to each observation handler, it is pouible for each
observation handler to create its own copy of the same emitter. We reject this method.

2. The handlers could create the emitters themselves, but inform the other handlers that they've
done this. This scheme breaks down when two handlers try simultaneously to create the same
emitter.

3. The handlers could rely on a single emitter manager agent to create all emitters. While this
approach is safe from a consistency standpoint, it is likely to be impractical, as the single
emitter manager could become a bottleneck in the interpretation.
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4. The handlers could send requests to one of many emitter managers, chosen by some arbitrary
method. This idea is nearly correct, but does not rule out the possibility of two emitter
managers each receiving creation requests for the same emitter.

5. The handlers could send requests to one of many emitter managers, chosen through some
algorithm which is invariant with respect to the observation id. This is in fact the algorithm
in use in ELINT. The algorithm for choosing which emitter manager to use is based on a
many-to-one mapping of observation id's to emitter managers.'

Euitters

Emitters hold some state and history regarding observations of the sources they represent. As each
new observation is received, it is added to a list of new observations. On a regular basis, the list
of new observations is scanned for interesting information. In particular, after enough observations
are received, the emitter may be able to determine its heading, speed, and location. The first time
it is able to determine this information, it asks a clustrr manager to either match the emitter to
an old cluster or create a new cluster to hold the single emitter. Subsequently, it sends an update
message to the cluster to which it belongs, indicating its current course, speed, and location.

Emitters maintain a qualitative confidence level of their own existence (possible, probable, and
positive). If new observations are received often enough, the emitter will increase its confidence level
until it reaches positive. If an observation is not received in the expected time interval, the emitter
lowers its confidence by one step. If the confidence falls below possible, the emitter "deletes" itself,
informing its manager, and Any cluster to which it is attached.

Cluster Managers

The cluster mana&ers play much the same role in the creation of cluster agents as the emitter
managers play in the creation of emitters. However, it is not possible to compute an invariant to
be used as a many-to-one mapping between emitters. If ELINT were to employ multiple cluster
managers, the best strategy for choosing which of the many managers would still reoult in the
possible :reation of multiple instances of the "same" cluster. Thus, we have chosen to run ELINT
with a single cluster manager. Fortunately, cluster creation is a rare event, and the single cluster
manager has never been a processing bottleneck.

As indicated above, requests from emitters to create clusters are spec.9ed as match requests
over the extant clusters. Emitters are matched to clusters on the basis of their location, speed, and
heading. However, the cluster manager does not itself perform this matching operation. Although it
knows about the existence of each cluster it has created, it does not know if the cluster has changed
course, speed, and/or direction since it was originally created. Thus, the cluster manager asks each
of its clusters to perform a match.

If either none of the clusters responds with a positive match, a new cluster is created for the
emitter, if one cluster responds positively, the emitter is added to the cluster, and is so informed of
this fact, if more than one cluster responds positively, an error (or a mid-air collision) must have
occured.

'The algonthm eomputeu the , bervatun d modulo the number of ermtter managers, and maps that number to
a particWlr manager.
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Clusters

The radar emissions of clusters of emitters often indicates the actual behavior of the cluster. Cluster
agents, therefore, apply heuristics about radar signals to d-ermine whether the behaviors of the
clusters they represent are threatening or not. This information, along with the course parameters
of each radar source, is the "output" of the ELINT system. A cluster will delete itself if all constituent
emitters have been deleted.
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Chapter 4

Programming in the CAOS
Framework

CAOS is package of functions on top of Lisp. These functions are partitioned into three major claases:

" Those which declare agents.

* Those which initialize agents.

" Those which support communication between agents.

We now describe the CAOS operators for each of these classes.

4.1 Declaration of agents

Agents are declared within an inheritance network. Each agent inherits the characteristics of its
(multiple) parents. The simplest agent, vaniila-agent, contains the minimal characteristics re-
quired of a functional CAOs agent. All other CAos agents reference vanilla-agent either directly or
indirectly. Another predeclared agent, process-agnda-ago&t, is built on top of vanilla-agent,
and contains a priority mechanism for scheduling the execution of messages.

Application agents are declared by augmenting the following characteristics of the base or other
ancestral agents:

Local Variables: An agent may refer freely to any variable declared local. In addition, each local
variable may be declared with an initial value.

.fessages: The only messages to which an agent may respond are those declared in this table This
simplifies the task of a resou:ce allocator, which must load application code onto each CARE

site.
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(dcltalgent agent-name (parent, ... parent,)
(localvars variable, ... varable.')
(uessages messagel ... message,,)
(symbolicasly-rforenced-agents agent, ... agent,))

Figure 4.1: The basic form of defagent

Symbolically Referenced Agenri: Some agents exist throughout a CAOS run. We call such agents
statsc, and we allow code in agent message handlers to reference such agents by name. Before
an agent begins running, each symbolic reference is resolved by the CAOS runtimes.

There are a number of additional characteristics; most of these are used by CAOS internally, and
we will document these in the next chapter.

The basic form for declaring a CAOS agent is defagent. It has the form illustrated by Figure 4.1.
The first element in each sublist is a keyword; there are a number of defined keywords, and their
use in an agent declaration is strictly optional. An agent inherits the union of the keyword values of
its parents for any unspecified keyword. Of those keywords which are specified, some are combined
with the union of the keyword values of the agent's parents, and others supersede the values in the
parents. Figure 4.2 contains the declaration of the emitter agent, one of the most complex examples
in ELINT.

As we discuss in the next chapter, dof agent forms are translated by CAOS into Flavors defflavor
forms (4]. CAOS messages are then defined using the defuethod function of zETALISP. These methods
are free to reference the local variables declared in the detagent expression.

4.2 Initialization of agents

The initial CAOS configuration is specified by the caos-initialize operator, which takes the form
illustrated by figure 4.3; for example, figure 4.4 is ELINT's initialization form.

The first portion of the form creates the static agents. In figure 4.4, a static agent named el-
gotcha-handler-1, an instance of the clas e1-observation-handler, is created on the CARE site
at coordinates (1, 2) in the processor grid.

The second portion of the form is a list of LISP expressions to be evaluated sequentially when
CAOS's initialization phase is complete. Each expression is intended to send a message to one of the
static agents declared in the first part of the form. These messages serve to initialize the application;
in figure 4.4, the initialization messages open log files and start the processing of ELrNT observations.

Agents may also be created dynamically. The crea:e-agent-instance function accepts an
agent clam name and a location specification;' the remot-addresa of the newly-created agent

is returned. While dynamically created agents may not be referenced symbolically, their remote-
address's may be exchanged freely.

I Currendy, apnta may b> created a" or near specified CARE situ. CAOS makes no attempt at dynamic load

baacng.
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(loc.l-rars
(pr-ocsss-agerzia '.-nacleini-z

el-in'z-cliste-asgcjae a

el-update-eai::.r-froz*-bservation))
(last-observed -1000000)
(cluator-znager * cluster-zanager-0)
mnagor
id
type
obs erved
fixes
last-heading
last-sods
confidence
cluster
new-obserations-since-time-tick-±lag
id-errors
&c-f lag)

(messages
.1-update- emitt er-from-observation
el-initialize-emitter
el-change-cluster-association
el-undo-collectiou-id-error)

(symbolically-ref erencod-agats
el-collection-reporter-0
el-correlation-report er-O
*l-tbhreat-roporter-0
*l-cluster-manager-O
el-cluster-manager-I
el-clustr-mnager-2
el-big-ear-handler
*l-gotcha-handler
al-taitter-trace-reportor-O))

Figure 4.2: The emitter agent
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((Isd- C1 a;c= - dos 5:.e -

Figure 4 3: The basic cAos initialization form

4.3 Communications Between Agents

-Agents communicate with each other by -exchanging mesages- cos does not guarantee that mes-
sages e their destinations: due to excessive message traric or processing element failure. mes-
sag.- m y be delayed or lost during routing. It is the responsibility of the application program to
devec and recower from lost messages. Commensurate with the facilities provided by CARE, mes-
sages may be tagged with routing priorities; however, higher priority messages are not guaranteed
to arrive before !ower-priority messages sent concurrently.

Two classes of me-,ag= are defined: thcse which return values (called value-desirrd messages),
and those which do not (called side-effecd messages). The value-desired-messages are made to return
their values to a special celK called affulzr. Processes attempting to access the value of a future are
blocked until that future has had its value set. It is possible for the value of a future to be set more
than once, and it is possible for there to be multiple processes awaiting a future's value to be set. 2

4.3.1 Sending messages

The CARE primitive post-packet, which sends a packet from one process to another, is employed
in CAOS to produce three basic kinds of message sending operations:

post: The post operator sends a side-effect message 6o an agent. The sending process supplies
the name or pointer to the target agent, the message routing priority, the message name and
arguments. The sender continues executing while the message is delivered to the target agent.

post-future: The post-future operator sends a value-desired message to the target agent. The
sending process supplies the same parameters as for post, and is returned a pointer to the
future which will eventually by set by the target agent. As for post, the sender continues
executing while the message is being delivered and executed remotely.

A process may later check the state of the future with the future-satisf ied? operator. or
access the future's value with the values-future operator, which will block the process until
the future has a value.

post-value. The post-value operator is similar to the post-future operator. however, the send-
ing process is delayed until the target agent has returned a value, post-value s defined ,n
terms of post-future and value-future.

2 Futures were ao used n QLsp and Muhiilisp i9j. The HEP Supercomputer '61 ;mple..,ented a simple version of
futures s & process synchronizazon mechsrnm.
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(Caos-imitialize
((.1-obsexrvaticn-reaIer-O .1-cbs ervation-reador (2 2))
(4@l-big-*&r-=-adlr-! e1-obsorvazion-hai=Uer (1 1))

~ er-2 el-obs er7atmom-hamnelr (1 1)
(el-otca-h~dlr-1*i-obser-ration-b-filer (1 2))

(el-gotcha-hanlor-2 al-obser~aticn-hard.1.r (1 2))
(e1-owiter-aager-O al1-ittr-aaager (2 M)
(*l-smitter-aanaer-1 *I-exitter-samager (2 2))
(ol-collecio-reozzer-O el-collection-reporter (1 2))
(ol-correlatiom-reivorter-O e1-correlation:-reporter (1 3))
(el-threat-reporter-C el-threar -reporter (1 3))
(el-saittr-trace-rporter-O e1-exitt er-trac e-roporter

(3 2))
(*l-cluster-trac-reporter-O el-cluster-trace-reporter

(3 1))
(el-cluster-anager-O *l-clustar-anager (2 M)

((post el-obsori'ation-roader-O ail
'el.-open-obs *rvatioa-f ile
*eliut-data-file')

(post *1-collection-reporter-O nil
.1l-initialize-reporter t
.linz:reports; collections .output")

(post *l-correlation-reporter-O nil
'el-initialize-reporter t
"clint: reports; correlations. output")

(post el-threat-report er-C nil
'.1-initialize-reporter t
"elint: reports; threats. output")

(post al-enitter-trace-reporter-O nil
'initialize-trace-repoz-ter t
"elint:reports; ehitter.traces")

(post el-clustor-trace-reporter-O nil
'initialize-trace-reporter t
"elint: reports;cdust er. traces")))

Figure 4 4: The initialization declaration for ELINiT.
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4.3.2 Detecting Lost Messages

It is possible to detect the loss of value-desired messages by attaching a timeout to the associated
future- The functions post-clockod-f.ture and post -ciock~d-v=- le are similar to their unuimed
counterparts, but allow the caller to specify a Itimeou and istieout action to be performed if the
future is not set within the timeout period. Typical actions include setting the future's value with
a default value, or resending the original message using the repost operator.

4.3.3 Sending to Multiple Agents

There exist versions of the basic pooting operators which allow the same message to be sent to
multiple agents.3 aultipost sends a side effect message to a list of agents; aulipost-futau.r and
aultipost-valu, send a value-desired message to a list of agents. In the latter case, the associated
future is actually a list of futures; the future is not considered set until all target agents have
responded. The value of such a message is an association-list; each entry in the list is composed of
an agent name or remote-add ass and the returned message value from that agent. There exit
docked versions of these functions (called. naturally, =ultipost-clockod-fuzurt and xtiltipost-
clocked-value) to aid in detecting lost multicast messages.

4.4 Communications Between Processes

Processes in each agent communicate using the shared local variables declared in the agent. Be-
sides sharing previously computed results this way, processes may also share the results of ongoing
computations.

Consider the following scenario: within an agent, some process is currently computing some
answer. At the same time, another process begins executing, and realizes somehow that the answer
it needs to compute is the same answer the other process is 4,lready computing. The second process
could take one of two actions: it could continue computing the answer, even though this would
mean redundant work, or it could wait for the first process to complete, and return its answer. The
second approach is feasible, but it does tie up resources in the form of an idle process.

The cAos operators attach and my-handl, offer a third alternative solution. If a procmas
knows it may ultimately produce an answer needed by more than one requesting agent, it obtains
its "handle" (Section 5.4) by calling my-handle, and places it in a table for other processes to
reference. Any other process wishing to return the same answer as the first calls attach, with the
first process's handle as argument. The first process returns its answer to all requesting agents
waiting for answers from the other processes, and the other processes return no value at all.

4.5 What CAOS Offers Over CARE

CAOS is a large system. It is reasonable to ask what advantages there are to programming in LAOS

as opposed to programrmng in CARt. We believe there are three major advantages:

'Neither CAOS nor CARE currently support a predicated maiLcsJt mode. wherein messages would sent to all

agents sat iying a particular predicate. mesavs can only be sent to a fully-speafied list of agents.
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Clarity: The framework in which an agent is declared makes explicit its storage requirements and
functional behavior- In addition, the agent concept is a helpful abstraction at which to view ac-
tivity in a multiprocessing software architecture. The concept lets us partition a flat collection
of processes on a site into groups of processe attached to agents on a site. CAOS guarantees
the only interaction between processes attached to different agents is by message-passing.

Convenience: The programmer is freed from interfacing to CARE's low-level communications prim-
itives. As we said earlier, CAOS is basically an operating system, and as such, it shields the
programmer from the same class of details a conventional operating system does in a conven-
tional hardware environment.

Flexibility: Currently, CARE schedules processes in a strict first-in, first-out manner. CAOS, on the
other hand, can implement arbitrary scheduling policies (though at a substantial performance
cost; we discuss this in Chapter 6).
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Chapter 5

The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels-site
and process-reflect the organization of cARE; the remaining (agent) level is an artifact of cAos.

We discuss first the general design principles underlying cAos, and then describe in greater detail
the functions and structure of each of CAOS's levels. Appendix B offers a complete guide to the
algorithms and data structures employed in cAos.

5.1 General Design Principles

The implementation of CAos described in this paper is written in ZETALISP, a dialect of Lisp which
runs on a number of commercially available single-user Lisp workstations. ZETALISP includes an
object-oriented programming tool, called Flavors, which has proved to be a very powerful facility
for structuring large Lisp applications.

In Flavors, the behavior of an object is described by templates known as classes. An instance,
a representation of an individual object, is created by instantiating a claw. Instances respond to
messages defined by their clas, and contain static local storage in the form of instance variables.
Classes are defined within an inheritance network; each instance contains the instance variables and
responds to the messages defined in its claw, as well as those of the classes from which its class
inherits.

An appropriate usage for Flavors is the modelling of the behavior of objects in some (not nec-
essarily real) world. For example, cAOS site and agents structures are realized as Flavors instances.
The characteristics to be modelled are codified in instance variables and message names. In a well-
designed application, messages and variables are consistently named, thus, the implementation of a
particular behavior is totally encapsulated in the anonymous funct;on which responds to a message.

5.1.1 Extending the Notion

In some sense, a Flavors instance is an abstract data type. The instance holds state, and provides
advertised, public interfaces (messages) to functions which change or access its state. The internal
data representation and implementations of the access functions are private.
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In Flavors, the abstract data type notion is unavailable within an individual instance. Frequently,
the individual instance variables hold complex structures (such as dictionaries and priority queues)
which ought to be treated as abstract data types, but there exist no common means within the
standard Flavors mechanism for doing so.

CAOS, however, supports such a mechanism, by providing a means of sending messages to instance
variables (rather than to the instances themselves). The instance variables are thus able to store
anonymou? structures, which are initialized, modified, and accessed through messages sent to the
variable. Smilar mechanisms exist in the Unit Package [14] and in the STROBE system (13], both
frameworks for representing structured knowledge.

The CAOS environment includes a number of abstract data types which were found to be useful
in supporting its own implementation. The most commonly used are:

Dictionary: The dictionary is an association list. It responds to put, get, add, forget, and ini-
tialize messages.

Sorted Dictionary: The sorted-dictionary is also implemented as an association list, and responds
to the same messages as does the standard dictionary. However, the sorted-dictionary invokes
a user-supplied priority function to merge new items into the dictionary (higher-priority items
appear nearer the front of the dictionary). This dictionary is able to respond to the greatest
message, which returns the entry with the highest priority, and to the next message, which
returns the entry with the next-highest priority as compared to a given entry.

The sorted-dictionary is used primarily to hoid time-indexed data which may be collected
out-of-order (e.g. when data for time a + 1 may arrive before data for time n).

Hash Dictionary: The hash-dictionary is implemented with a hash table, and responds to the same
messages as the unsorted association list dictionary.

Queue. The queue da,.a type is a conventional first-in, first-out storage structure. The put message
enqueues an item on the tail of the queue, while the get message dequeues an item from the
head of the queue.

Priority Queue. The priority-queue data type supports a dynamic heapsort, and is implemented as a
partially-ordered binary tree. It responds to put, get, and initialize messages. Associated
with the queue is a function which computes and compares the priority of two arbitrary queue
elements; this function drives the reblancing of the binary tree when elements are added or
deleted.

.'vfonitor. A monitor provides mutual exclusion within a dynamically-scoped block of Lisp code. It
is similar in implementation to the monitors of lnterlisp-D and Mesa [10!.

If the monitor is unlocked, the obtain-lock message stores the caller's process id. as the
monitor's owner, and marks the monitor as locked, otherwise, if the monitor is locked, the
obtain-lock message places the caller's process id on the tail of the monitor's waiting queue,
and suspends the calling process.

The release-lock message removes the process id from the head of the monitor's waiting
queue, marks the monitor's owner to be that id, and reschedules the associated process
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Monitors are normally accessed using the vith-monicor form, which accepts the name of
an instance variable containing a monitor, and which cannot be entered until the calling
process obtains ownership of the monitor. The with-monitor form guarantees ownership of,
the monitor will-be relinquished when the calling process leaves the scope of the form, even if
an error occurs.

5.2 The CAOS Site Manager

The site manager consists of a Flavors instance containing information global to the site-information
needed by all agents located on the site. In addition, the site manager includes a CARE-level
process which performs the functions of creating new agents and translating agent names into agent
addresses, as described below.

The following instance variables are part of the site manager:

incoaig-streaa: This instance variable contains the CARE input stream address on which the site
manager process listens for requests. Agents needing to send messages to their site manager
may reference this instance variable in order to discover the address to which to direct site
requests.

static-agent-streaa-table: This instance variable is a dictionary which maps agent names into
the CAR streams which may be used to communicate with the agents. The entries in this
dictionary reflect statically-created agents; new entries are added as the result of now-initial-
agent-online messages directed to the site (see below). The dictionary is used to resolve agent
name-to-address requests from agents created locally.

unresolvwd-agent-strean-table: The site manager keeps track of agent names it is not able to
translate to addresses by placing unsatisfiable request-symbolic-reference requests in this
dictionary. The keys of the dictionary are unresolvable agent names. As the agent names
become resolvable, the unsatisfied requests are satisfied, and the corresponding entries are
removed from the dictionary.

After the initialization phase of a CAOS application has completed, there will be no entries in
this dictionary in any of the sites.

local-agents: This instance variable is a dictionary whose keys are the names of agents located
on the site, and whose values are pointers to the Flavors instances which represent each agent.
local-agenos is used only for debugging and status-reporting purposes.

free-process-queue: When a CARE process which was created to service a request finishes its
work, it tries to perform another task for the agent in which it was created. If the agent
has no work to do, the process suspends itself, after enqueuing identifying information in this
instance variable, which holds a queue abstract data type. When any agent on the same
site needs a new procesti to service some request, it checks this queue first; if there are any
suspended (free) proceses waiting in this queue, it dequeues one and gives it a task to perform.
If this queue is empty, the agent asks CARE to create a new process.
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The site manager responds to the following messages:

nev-initial-agent-online: As each static agent starts running during initialization of a CAOS
run, it broadcasts its name and CARE input stream to every site in the system, using this
message. The correspondence between the sending agent's name and address is placed in
the static-agent-streax-table dictionary for future reference by agents located on the
receiving sites. If any agents have placed requests for this new agent in the iuzesolv6d-
agent -stream-tabla, messages containing the new agent's name and address are sent to the
waiting agents.

request-symbolic-reierence: Whenever a static agent is created, it runs an initialization func-
tion, which among other tasks, caches needed agent name-to-address translations. For each

translation, the agent sends this message to its site manager. If the site manager can resolve
the name upon receipt of the message, it responds immediately; otherwise, it queues the re-
quest in the un.resolved-ag ,nt-streas-tabl., and defers answering until it is able to satisfy
the request. The requesting agents waits until it has received the answer before requesting
another translation.

nake-new-agent: This message is sent to a site to cause a new agent to be created during the

course of a CAOs run. The site manager creates the new (dynamic) agent and returns the
agent's input stream to the sender of this message. The newly-created agent is not placed
in the static-agent- streaa-tatbl*; thus, the only way to advertise the existence of such a
dynamically-created agent is by tne creator of an agent pasing the returned input stream to
other agents.

5.3 The CAOS Agent

As discussed above, CAOS agents are implemented as Flavors instances. Their class definitions
are defined by translating detagent expressions into defi.nvor expressios. CAOS itself defines
two basic agent classes: vanilla-agent and proceas-agtnda-agent. vanilla-agent defines the
minimal agent, process-agenda-agent is defined in terms of vanilla-agent, but adds the ability

to assign priorities to messages.' These basic agents are fully-functional, but lack o'cmain-specific
"knowledge," and cannot be used directly in problem solving applications.

As stated in the previous chapter, a CAOs agent is a multiple-process entity. Most of these
processes are in created in the course of problem-solving activity; we refer to these as user processes.

At runtime, however, there are always two special processes associated with each CAOS agent. One

of these processes monitors the CARE stream by which the agent is known to other agents. The

other participates in the scheduling of user processes. We shall refer to the first of these processes

as the agent npui monitor, and to the second of these processes as the agent scheduler. We explain

in detail the functioning of these two processes in the next section.

We describe here the role of important instance variables in a basic cAOS agent:

Thus is important for appications in which one agent must respond rapidly to a posting from another agent.

Assigning a message a high pnority will cause that message to be processed thead of any other messages with lower
priorities.
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soli-address: This instance variable is an analogue of Flavors' self variable. Whereas self is
bound to the Flavors instance under which a message is executing, self-address is bound to
the stream of the agent under which a CAOS message is executing. Thus, an agent can post a
message to itself by posting the message to self -address.

runnable-process-streas: This instance variable points to the stream on which the scheduler
process listens. Processes which need to inform the scheduler of various conditions do so by
sending CARE-level messages to this stream.

running-processes: This variable holds the list of user processes which are currently executing
within the agent. The current CARE architecture supports only a single evaluator on each site.
cAos tries to keep a number of user processes ready to execute at all times; thus, the single
CPU is kept as busy as possible.

runnable-process-list: A priority queue containing the runnable user processes. As a process is
entered on the queue, its priority is calculated to determine its ranking in the partial ordering.
There are two available priority evaluation functions: the first computes the priority based
solely on the time the process entered the system, the second considers the assigned priority of
the executing message before considering the entry time of the process. These two functions
are used to implement the scheduling algorithms of the vanilla-agent and the process-
agenda-agont, respectively.

scheduler-lock: The scheduler data structures are subject to modification by any number of
processes concurrently. The scheduler-lock is a monitor which provides mutual exclusion
against simultaneous access to the scheduler database.

5.4 The CAOS Process

In this section, we describe the mechanism by which cAos user processes are scheduled for execution
on CARE sites. User processes are created in response to messages from other agents. Associated
with each user process is a data structure called a runnable-iteam. The runnable-itea contains
the following fields:

Nessage-name, -args, -id, -ansver-targets: These fields store the information necessary to han-
dle a message request and send the resulting answer back to the proper agents.

for-effect: This field is a boolean, and indicates whether the message is being executed for effect
or value. This corresponds directly to the source of the message coming from a post operation
or a post-future operation.

state: This field indicates the state of the process. The possible states that a process may enter.
and the finite state machine which defines the state transition are discussed in the next section.

context: This field contains a pointer to the CARE stream upon which the process waits when it

not runnable. A process (such as the scheduler) wishing to wake another process simply sends
a message to this stream The suspended process will thus be awakened (by CARE).
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time-stamp: This field contains the time at which the process entered the system. It is used by
the functions which calculate the execution priority of processes.

The CAOS scheduler's only handle on a process is the process's runnable-item. In fact, the
only communication between a user process and the CAOS scheduler consists of the exchange of
ru=nable-item's.

5.5 Flow of Control

In the following, we detail how a user process, the cAos input monitor, and the CAOS scheduler
interact to process a message request from a remote agent. For purposes of exposition, we assume
the following sequence of events:

1. An agent, agent-i, executes a post operation, with agent-2 as the target. The posting is
for the message named aessage-a.

2. agent-2 receives and executes the posting. In order to complete the execution of message-a,
it must perform a post-valu, operation to a third agent, agent-3.

We begin at the point where agent-1 has performed its post operation.

5.5.1 Input Processing

The input monitor process handles requests and responses from remote agents. When the message
from agent-i enters agent-2, its input monitor creates a new runnable-it e to hold the state of
the request. The message name, arguments, id, and answer targets are copied from the incoming
message into the runnable-item. The runnable-iteu's state is set to never-run, and its time
stamp is set to the current time. In order to queue the message for execution, the input monitor
takes one of two actions.

If the agent's runnable-process-list is empty, the rumnable-item is sent in a message to
the agent scheduler process (by sending the item in a message to the stream whose address is
found in the agent's runnable-process-strqa.a instance variable). When the agent's runnable-
process-list is empty, the scheduler process is guaranteed to be waiting for messages sent to
the scheduler stream, and hence, will be awakened by the message sent from the input monitor.
The scheduler then computes the priority of the message, and places the runnable-item in its
runnable-process-list.

If the agent's runnable-process-list is noi empty, the input monitor computes the message's
priority and places the runnable-i:ea on the ruiniable-proces-list itself. When the queue is
not empty, it is guaranteed that the scheduler will examine the queue sometime in the future to
make scheduling decisions, thus, it is not necessary to send any messages to the scheduler to inform
it of the existence of new processes.
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5.5.2 Creating Processes

Eventually, the newly-created runnable-item will reach the head of agent-2's runnable-proceus-
list. At this time, there is still no process associated with the item, so the scheduler creates a
process using the facilities of CARE, adds the process to the running-processes list, and pa.sses it
its runnable-item. The process will eventually gain control of the evaluator, and will set the state
of its runnable-item to running. It then begins executing the requested posting.

5.5.3 Requesting Remote Values

At some point, the process executing on agent-2 requires a value from agent-3, and performs
a post-value operation to acquire it. The process looks up the address of agent-3, and poets
a menage which contains the appropriate message name, arguments, id, and answer target. The

,essage-id unambiguously identifies the future upon which the process will be waiting for the
value to be returned. The answer target is the agent's own self-address; when the answer is
received by the input monitor process, it will be forwarded to the appropriate future, and the
process will be reawakened.

In the meantime, the process sets its state to suspended, removea its ruunablo-iteis from the
running-processes list, and appends it to the list of processes already waiting for the future to be
satisfied. If the runnable-procss-list is not empty, the suspending process wakes the process
at the head of the queue. 2 The suspending process then waits for a message on its wakeup stream,
the stream whose address is in the context field of its runnable-iten.

5.5.4 Answer Processing

Some time later, agent-3 will have completed its computations, and will have returned the desired
answer to agent-2. The answer will be received by agen1t-2's input monitor process, which will
recognize the input as a value to be placed in a future. The input monitor sets the value field of the
appropriate future, and moves the runnable-ite s of the processes waiting on the future to the
ruznable-procss-list.

If the queue was previously empty, the agent must have been (or will soon be) entirely idle; thus,
the ruzinabls-items are sent to the scheduler in a message, causing the scheduler to be reawakened.
if the queue was not previously empty, the agent must be busy, so the items are simply added to the
queue according to their priorities. In both cases, the runnable-it ms are placed in the runnable
state.

5.5.5 Reawakening Suspended Processes

When the runnable runnable-itam reaches the head of agent-2's runnable-procss-list, a
message (which contains no useful information) is sent to its associated process's wakeup stream.
As a result, process eventually wakes up, gains control of the evaluator, and sets its state to running.

21n effect, the process takes on the role of the scheduler. Although the system would continue to work with only
a designated scheduler process perforiun *cheduler duties, this arrangement permits schedubng to take place with
minimal hency. As a result, fewer evaluator cycles are wuted waiting for the scheduler process to run the next user
process.
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5.5.6 Completing Computation.

A process may perform any number of post, post-future, or post-val.u* operations during its
lifetime. Eventually, however, the process will complete, having computed a value which may or
may not be sent back to the requesting agent. If the process was suspended for any portion of its
lifetime, another process may have attached to it; in this case, the process may have more than one
requesting agent to which to return an answer.

Before the process terminates, it examines the head of the runnable-process-list. If the
queue is empty, the process simply goes away. If the runnable-item at the head of the queue is
runnable, it sends the appropriate message to awaken the associated process. Finally, if the item
is never-run, the process makes itself the process associated with this new -iunnable-itsm, and
executes the new message in its own context.3 Barring this possibility, the process "queues" itself
on a free process queue associated with the site manager; when a new process is needed by an agent
on the site, one is preferentially removed from this queue and recycled before a entirely new process
is created. This way, processes, which are expensive to create, are reused as often as possible.

3Ths is ..nother stuatlon in which an appbcaton proce, performs scheduling duties.
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Chapter 6

Results and Conclusions

The CAOS system we have described has been fully implemented and is in use by two groups within
the Advanced Architectures Project. CAos runs on the Symbolics 3600 family of machines, as well
as on the Texas Instruments Explorer Lisp machine. ELINT, as described in Section 3.2, has also
been fuy implemented. We are currently analyzing its performance on various size processor grids
and at various data rates.

6.1 Evaluating CAOS

CAOS is a rather special-purpow environment, and should be evaluated with respect to the pro-
gramming of concurrent real-time signal interpretation systems. In this chapter, we explore CAOS's

suitability along the following dimensions:

" Expressiveness

" Efficiency

* Scalability

6.1.1 Expressiveness

When we ask that a language be suitably expressive, we ask that its primitives be a good match
to the concepts the programmer is trying to encode. The programmer shouldn't need to resort to
low-level "hackery" to implement operations which ought to be part of the language. We believe
we have succeeding in meeting this goal for CAOS (although to date, only cAos's designers have
written CAos applications). Programming in cAOS as programming in Lisp. but with added features
for declaring, lnitialzang, and controlling concurrent, real-time signal interpretation applications.
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6.1.2 Efficiency

CAos has a very compolicated architecture. The Iif'i of a rnee as Ede-be inSecticn 5 5
;nvoives numerous processing states and scheduler anveveauntos. Much of this cwnp'enEV 'Zenrves
from the desire to support a~rteroate schedu!ing po:lcies_ within an a-~ ecso thi ctne,

is approximately one !rder Of magnIude iM processing Iatency- For- Ehe crramon Settings el sirriu-
lation parameters. '- '3. messages are exchanged in about 2-3 trafieconds. nihile CAOS messages
require about 30 isecon&s It is this cost which forcm us to decomrpose applications coarsety,
since more fine-grwe..li decompoisitions would inevitablv require more mesage traffic-

We conclude that CAos does not make efficient use of the underlying CARE architecture- A
compromilse. which we are Just beginning :o explore, would be to avroid the comaplex flow of control
aes-cribed in Section 533 in agents whose scheduling pojil es are the same as cARE's (FIFO). In such
agents, we could reduce the cAos iliiitlreS to Simple ft . tional interfaces to CARE- We anticipate
such an approach would be much more effcient..

6.1.3 Scalability

A system which scales well is one whose performance increases commensurately With .-t size. Scal-
ability is a common metric by which multiprocessor hardware architectures are judged-- does a
100-processor realization of a particular architecture perform 10 times better than a 10-processor
realization of the same architecture? Does it perform 5 times better? 'a")nly just as well'? Or W01orse ?
In hardware systems, scalability is typically limited by va0nious forms of contention in memories.
busses, ec-c The 100-processor system might be slower than the 10-processor System because al
interprocessor communications are routed through an element which .s only fast enough to support
10 processors.

We ask the same question of a CAOS application: does the throughput of ELINT. for example.
increase as we make more processors available to it? This question is critical for CAos-based real-time
.nte^rpretation systems,. our only means of coping with arbitrarily large data rates is by increasing
the number of processors. Section 6.2 discusses this issue in detail.

We believe cAos scales well with respect to the number of available processors. The potential
limiting factors to i- scaling are (1), increased software contention, such as inter-pipeline bot-
tlenecks described in Section 3.1-2. and (2), increased hardware contention, such as overloaded
processors and/or communiication -hannels- Software contention can be miniimzed by the design
of the application. Communications contention can be minimized by executing CAOS on top of
an appropriate hardware architecture (such as that afforded by CARE), cAos applications tend to
be coarsely decomposed-they are bounded by :omnputation, rather than communication-and thus,
communications loading has never been a problem.

Unfortunately, processor loading remains an .ssue. A configuration with poor .'C'ad balancing. in
which some processors are busy, whilc others are idle, does not Seale well. Increased throughput .s
.imited by contention for processing resources 3n overloaded sites, while resources on unloaded sites
go unused. The probiem of automatic toad balancing .s not addressed by CAos. agents are assignedi
to processing sites on a round-robin basis, with no attempt to keep potentially busy agents apart.
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Co,_D__cL_-_v- 191 201 905 891 931 951FuxEs 1 4-31 421 99e 1 -001 1001 1c0

Fustox 1 01 01 771 85 881 891

Table 6-1: Quality of E LNT p. rormance of v--arious grid .-:zes and control strategies (1 -lAN,T time
unit = 0.! seconds).

6.2 Evaluating ELINT Under CAOS

Our experience with ElMNT indicates the primary determiner of throughput and answer-quality is

the srategy used in making individual agents cooperate in producing the desired interpretation. Of
secondary importance is the degree to which processing load is evenly balanced over the processor
grid. We now discu the impact of these factors on ELINT's performance.

The following three strategies were used in our experiments:

Nc: This strategy represents limited inter-agent control. No attempt is made to prevent concurrent

creation of multiple copies of the 'same7 agent (this possibility arises when multiple requests
to create the agent arrive simultaneously at a single manager). As a result, multiple, non-

communicating copies of an abstraction pipeline are created; each receives a only portion of
the input data it requires. The nc strate,.y was expected to produce poor results. and was
intended oniy a; a baseline against which to compare more realistic control strategies.

cc: In this strategy, the manager agents asure that only one copy of a agent is created, irrespective
of the number of simultaneous creation requests; all requestors are returned pointers to the
single new agent. Originally, we believ ed the cc (for "creation control") strategy would be

sufficient for ELINT to produce correct high-level interpretations.

CT: The CT ("creation and time control") strategy was designed to manage skewed views of real-
world time which develop in agent pipelines. In particular, this strategy prevents an emitter
agent from deleting itself when it has not received a new observation in a while, yet some

observation-handler agent has sent the esitter an observation which it has yet to receive.

Table 6.1 illustrates the effects of various control strategies and grid sizes. The table presents
six performance attributes by which the quality of an ELINT run is measured.

False Alarms: This attribute is the percentage of emitter agents that ELINT should not have hy-
pothesized as existing.

ELINT was not severely impacted by false alarms in any of the configurations in which it was

run.
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ControliC Simuated Time (sec) I
Tpe I 2x2! 4x4 !6x6)

%c > L191 1
cc I I 10.87 I 5.12J
C6 Ii1.80u d 8.10 1 4.17J

-rhs .r was.far" Erom comlekm when it '-a halted due to zcemve accwmul.ted waf.-clo&c time.

Table 6-2: Simulated time required to complete an ELINT run (1 ELINT time unit = 0.1 seconds).

( Control f Message Count

Type 2x2 I 4x4 I 6x6j

N4C I >16118

cc j 7375
CT I 4 12 i 4703 4616 1

Table 6.3. Number of messages exchanged during an ELINT run (1 ELINT time unit = 0.1 seconds).

GRID
SIzE 11xl 2x2 3x3 4x4l5x5 6x6SIMULATED I
TIME (sec) 9.42 3.20 1.49 0,74 0.52 0.56

Table 6.4: Overall Simulation Times for CT Control Strategy (1 ELINT time unit = 0 01 seconds,

debugging agents turned off).
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Reincarnation: This attribute is the percentage of recreated *ai.er agents (e.g., ouite:rs which
had previously exi ted but had deleted themselves due to lack of obser.'ations). Large numbers
of reincarnated esit. ors indicate some portion ELINT is unable to keep up with the data rate
(,.e.. the data rate may be too high globally, so that all oniiters are overloaded, or the data
raze may be too high locally, due to poor load balancing, so that some subset of the en:ittrs
are overloaded).

The cT control strategy was designed to prevent reincarnations; hence, none occurred when
CT was employed on any size grid. When cc was used. only the 6 x 6 grid was large enough
for ELINT to keep up with the input data rate.

Confidence Level: This attribute is the percentage of correctly-deduced confidence levels of the
existence of an eit:er.
The correct calculation of confidence levels depends heavily on the system being able to cope
with the incoming data rate. One way to improve confidence levels was to use a large proce.sor
grid. The other was to employ the cT control strategy, since fewer reincarnations result in
fewer incorrect (e.g., too low) confidence levels.

Fixes: This attribute is the percentage of correctly-calculated fixes of an aittoer.

Fixes can be computed when an *sitter has seen at least two observations in the same time
interval. If an enitter is undergoing reincarnation, it will not accumulate enough data to
regularly compute fixes. Thus. the approaches which minimized reincarnation maximized the
correct calculation of fix information.

Fu3ion: This attribute is the percentage of correct clustering of *si:ter agents to cluster agents.

The correct computation of fusion appeared to be related, in part, to the correct computation
of confidence leveis. The fusion process is also the most knowledge-intensive computation in
ELINT, and our imperfect results indicate the extent to which ELINT's knowledge is incomplete.

We interpret from Table 6.1 that control strategy has the greatest impact on the quality of
results. The CT strategy produced high-quality results irrespective of the number of processors
used. The cc strategy, which is much more sensitive to processing delays, performed nearly as well
only on the 6 x 6 processor grid. We believe the added complexity of the CT strategy, while never
detrimental, is only beneficial when the interpretation system would otherwise be overloaded by
high data rates or poor load balancing.

Tables 6.2 and 6-3 indicate that cost of the added control in the CT strategy is far outweighed
by the benefits in its use. Far les message traffic is generated, and the overall simulation time is
reduced (In Table 6-2, the last observation is fed into the system at 3.6 seconds; hence, this is the
minimum possible simulated run time for the interpretation problem).

Finally, Table 6 4 illustrates the effect of processor grid size when the CT control strategy is
employed. This table was produced with the data rate set ten times higher than that used to
produce tables 6 1-6 3, the minimum possible simulated run time for the interpretation problem is
0 36 seconds The speedup achieved by increasing the processor grid size is nearly linear with the
square root of the size: however, the 6 x 6 grid was slightly slower than the 5 x 5 grid. In this last
case, we believe the data rate was not high enough to warrant the additional processors.
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6.3 Unanswered Questions

cAos has been a suitable framework in which to construct concurrent signal interpretaion systems.
and we expect many of its concepts to be useful in our future computing architectures. Of principal
concern Wo us now Ls increasing the efficiency with which the underiying CARE architecture is used.
In addition, our experience suggests a number of questions to be explored in future research.

" What is the appropriate level of granularity at vhich to decompose problems for cARE-like
architectures?

" What is the most efficient means to synchronize the actions of concurrent problem solvers
when necessary?

" How can flexible scheduling policies be implemented without significant loss of efficiency?
What is the impact on problem solving if alternate scheduling policies are not provided?

We have started to investigate these questions in the context of a new CARE environment. The
primary difference between the original environment and the new environment is that the process
is no longer the basic unit of computation. While the new CARE system still supports the use of
processes, it emphasizes the use of conteits: computations with less state than those of processes.

When a context is forced to suspend to await a value from a stream, it is aborted, and restarted
from scratch later when a value is available. This behavior encourages fine-grained decomposition
of problems, written in a functional style (individual methods are small, and consist of a binding
phase, followed by an evaluation phase).

in addition, CARE now supports arbitrary prioritization %f messages delivered to streams. As a
r,-ult ;t ;s no longer necessary to include in CAOS its complex and expensive scheduling strategy.
Early indications are that the new CARE environment with a slightly modified CAos environment
performs between two and three orders of magnitude faster than the configuration described in this
paper.
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Appendix A

Mergesort: A Simple CAOS
Application

Mer esort is an efficient sorting algorithm. It is simple, and well-suited to a concurrent, message-
pasing implementation. As mMrge ort is not a real-time application, we need not be concerned with
the effects of any data rate. Further, its run time is determined entirely by the size of the input; it
is not sensitive to initial sorting of the data.

Our algorithm recursively subdivides the input list into two half-size lists, until lists of length 2
am, obtained. These lists are then trivially sorted, and recombined in sorted order as the recursion
is unwound. We exploit the concurrent CAOS architecture by implementing the recursion as post-
value messages sent to other agents. Each processor contains a single norgesort agent. Agents are
asigned in a globally round-robin order, and are created when necessary by a aergesort-anager;
we employ one manager per column in the processor grid (this makes use of a natural invariant
which lets us replicate managers-see our discussion of this approach within ELINT, in Section 3.2).
The algorithm adapts automatically to different processor grids.

Table A.1 illustrates aergesort's runtime on different processor grids and on various input
lengths. aergeisort is well-known to require O(n log n) time on a uniprocesor; similar analysis
indicates aorgesort should require 0(n) time on an "infinite" number of processors.' On a grid
of size 1, aergesort implements a very expensive approach to a conventional mergesori (examine
the leftmost column of the table); however, on a sufaiciently large grid, the algorithm distributes
computation across enough processors efficiently enough to achieve nearly 0(n) time (as seen in
diagonal boundary of the table).

Table A.1 also illustrates the effects of choosing too small a grain-size for cAos. mergesort is
dominated by both communication and agent creation costs. It took substantially longer to sort an
8-element list on 4 processors than on I processor. Most of this time was spent waiting for answers
from asergesort-manager agents.

I An infinite number of processors is a sufficient number to prevent any runnable "process" from having to wait for

a fte processor; in our implmentation of mrgesort, this number to n/2. Shapiro a implementation in Concurrent
Prolog achieved 0(n) time with 0(Iogn) processors 121.
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I Procesor Grid S.-ze
n I I1 4 1 9 1 16i 251 36

64 1 1414 1912 1 756 1 6401 537 .514
132 1803 1 606 I 466 1 432 1 471 I161 460 388 i349 1 344 i

81 274 1397242j
41 121 141
2 31 I

Table A.1: ,,rgesort runtimes (in milliseconds) on various processor grids and input sizes.

A.1 The mergesort Source Code

This section contains the source code for sergesort. It is intended to show the flavor of program-
ming in CAOS with a relatively simple example. We show first the code which declares and executes
within the aergsorxt and aergesort-aanager agents.
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;;Global variables controlling assignment of agents to sites

;;If we were strict, this wouldn't be possible, since we're
making use of the fact that aemor in each site really isn't

;;distributed. However, we do this to force round-robin
;;allocation.

(defconst *last-xv 2.)
Cdefconst *last-y* 1)
(defconst *array-width* 1)
Cdefconst *array-heights i

;;Define the basic mergesort agent
(defagent mergesorter (vanilla-agent)

(documentation "In agent which can perform a level of mergesorting")
C symbolically-ref erenced-agents

(Nergesortor-1-1) zergesorter)
((mergesort-manager- 1) aergesort-manager)
((mergesort-sanager-2) margesort-nanager)
((zergosort-sanager-3) margesor-t-sanagar)
(Cmergesort-sanager-4) mergesort-manager)
C Cergesort-manager-S) mergesort-manager)
C(unergesort-zanagor-6) zergesort-manager))

(instance-vars
(known-sorters vp-slot value nil datatype $Sdictiouary)
(managers vp-slot value 'CIM 2rgesort-managor-1)

(2 norgeiort-2anager-2)
(3 mergesort-sanager-3)
(4 morgesort-sanagor-4)
(S morgosort-managor-5)
(6 .morgesort-manager-8))

datatype #Sictionary))
(Messages-methods (mergefort :mergesort)))
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-; he initialize method clears the dictionary of site-agent

,;mappings prior to the staxrt of each run.
(dofmethod (mrgesorter :initialize) (krest ignore)

(send self 'known-sor-ters :initialize))

;The next-neighbor method returns a stream to a sorting agent
;;which will perform half of the next lower-level recursive sort.

(defaechod (mergesorter :next-neighbor) 0)

(let ((next-location-site
(multiple-value-bind (x y) Cnext-x-and-y)

;; x and y hold site coordinates f or the next agent.
(send (lookup-site z y) :care-sxte))))

(let ((maybe-known-agent
;; check the dictionary for a site-agent mapping.
(aend self 'known-sarters :get next-location-site))

(cond (maybe-known-agent saybe-known-agent)
(t (let ((next-location

(send next-location-site :location)))
Don't know the mapping. Isk a manager.

(send self 'known-sorters :put
next-location-site
(post-value, (send self 'managers :get

(first nsxt-location))
nil
:new-acent (first next-location)
(second next-location)))))))))
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(defaethod Cmergesorter :mergesort) (krest list)
(cond (Ceq (length list) 2)

;; Trivial case. Lists of length 2.
'(,(stin (first list) (second list))

.(zax (f irst list) (second list))))
(t (lot* ((first-neighbor (send self :next-n~ighbor))

(second-neighbor (send self :neit-neighbor))
;Recurse: divide the list and sort both halves.
;;Us., post-future to start each halt.

(first-future
(lexpr-funcall *'post-future first-neighbor nil

mUergesort
(copylisc (first-half list))))

(second-future
(loxpr-funcall S'post-futuro second-neighbor nil

:mergesorz
(copylist (second-half list)))))

*Combine the sorted sublists.
vallae-fuzure blocks until the half finishes.

(do ((el (valuo-future first-future)
(cond ((null e2) (cdr .1)

((or (null W1 (> (first el) (first s2))
*I)
(t (cdr el))))

(.2 (value-future second-future)
(cond ((null el) (cdr *2))

((or (null. e2) (> (first e2) (first 01M)
.2)
(t (cdr e2))))

(result nil))
((and (null el) (null s2)) result)

(cond ((and *1 92)
(setq result Cnconc roult

(list (sin (first ci)
(first e2))))))

(*I (setq result (nconc result
(list (first ei))

(t (sotq result (nconc result
(list (first *2))))))))))

,.Function to maintain globally round-robin agent-site

,.allocation.

(defun nezt-x-and-y 0)
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(multiple-value-progi (values *last-%* *last-y*)
(when (> (inc *last-x-) *array-width*)

(sotq *last-x- 1)
(when (> (inct *last-ye) 'array-height')

Csetq *last-y* 1)))))

,;Return the first hall of a list.
(defun first-half (list)
(loop for i from I to U/I (length list) 2) as * in list

collect e))

,;Return the second half of a list.

(defun second-halt (list) Cnthcdr C/ (length list) 2) list))

;;Define the mergesort-manager. These agents, located one
;;per column in the processor grid, are responsible for
;;creating new argesort agents upon request.

(defagent sergesort-manager (vanilla-agent)

(documentation "in agent to create other morgesortars')
(instance-vars agent-array)
(messages-methods (new-agent :new-agent)))

;;The initialize method clears the manager's mapping of
;;(x,y) coordinates to mergesort agent.

(defuethod (morgosort-manager :initialize) (max-x max-y)

Csetq agent-array (make-array (list (14- max-i) (1+ max-y)))))

;The new-agent method returns the agent already at

;;(x,y), or creates a new agent-at (x,y) and returns it.
(defmethod (morgesort-manager :new-agtnt) (x y)

(cond ((aret agent-array x y))
(t (let ((the-new-agent (create-agont-instance

'mergesorter

(list X y)"))

(aset the-new-agent agent-array x y)

the-new-agent)))
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This next section of code is the CAOS initialization file which produced the runime numbers dis-
played in Table A.I:

(dot coast *the-original-list*
'(68 7 4 1 2 8 S 3 1612 9 11 1513 1014

32 22 30 21 28 19 26 18 24 31 22 29 20 29 25 17
64 63 62 61 60 S9 34 33 58 57 56 SS 54 63 52 51
50 4948 47 48454443 424140 39 38 3736 3S))

(dot const *the-current-listv nil)

(caos-initialize
((mergesorter-1-1 mrgesorter (1 W)
(mergesort-sanagor-1 mergesort-manager (0 1)
(margesort-uanager-2 mergesort-manager (2 1))
(mergesort-sanager-3 margesort-manager (3 1))
(mrgeaort-xanager-4 morgesorc.-manager (4 1))
(asrgesort-sanagr-6 aergesort-manager (5 1))
(mrgtoort-sanagor-6 margosort-manager (d M)
(uith-open-f ile (log "x7:schoen.qsort;qsort.log1 :write)

(setq ethe-current-list* *the-originl-lists)
(loop with star-t-ti... for j from 6 dovulo I do

(format log "kSorting the list:'kS"
stht-current-list.)

(loop for i from 1 to 3 do
(multipost-value

'(sergesort-manager-1 merge aort-manager-2
mergesort-manager-3 mrgesort-managor-4

mergesort-manager-S mergesort-managor-G)
nil :initialize i i)

(post-value margesorter-1-1 nil :initialize)

(format log "-*Starting 'D processor sort at -DI,
(0 i i) (caos-tiae))

(aetq star-t-tim. :caos-time))
(lexpr-funca1l V'post-value mergesore er-i-i nil

msergesoret *the-current-listo)
(format log *l&Finxhd at 'D. That took 'D ins"

(caos-tixe)
(0 (- (caos-time) start-time) 1.Oe-SM)

(setq *th*-cu=rent-list* (first-half *the-current-lxst*))))))
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We conclude with the log file produced by this mergesort execution:

Sorting the list:
(8 7 4 1 2 8 5 3 16 12 9 11 15 13 10 14 32 22 30 21 28 19 26 18 24 31

22 29 20 29 25 17 64 83 62 61 60 59 34 33 58 57 56 55 54 53 52 51 50
49 48 47 46 46 44 43 42 41 40 39 38 37 36 35)
Starting 1 processor sort at 9803527
Finished I processor sort at 151163188. That took 1413.5966 as
Starting 4 processor sort at 157430828
Finished 4 processor sort at 248600531. That took 911.697 as
Starting 9 processor sort at 254848384
Finished 9 processor sort at 330631571. That took.757.83185 as
Starting 16 processor sort at 337017977

Finished 16 processor sort at 401035492. That took 640.1752 as
Starting 25 processor sort at 407972369
Finished 25 processor sort at 461663705. That took 536.9133 us
Starting 36 processor sort at 468137724

Finished 36 processor sort at 519548649. That took 514.10925 us
Sorting the list:
(6 7 4 1 2 8 5 3 16 12 9 11 15 13 10 14 32 22 30 21 28 19 26 18 24 31
22 29 20 29 25 17)
Starting I processor s-rt at 526138721
Finished I processor sort at 606424159. That took 802.8544 us
Starting 4 processor sort at 613038165
Finished 4 processor sort at 873645208. That took 606.07043 as
Starting 9 processor sort at 680223869
Finished 9 processor sor at 726796432. That took 465.72562 ue
Starting 16 processor sort at 733697221
Finished 16 processor sort at 776848166. That took 431.50943 as
Starting 25 processor sort at 783605583
Finished 25 processor sort at 830669664. That took 470.64078 as
Sorting the list:
(6 7 4 1 2 8 5 3 16 12 9 11 15 13 10 14)

Starting I processor sort at 837629049
Finished 1 processor sort at 883646903. That took 460.17856 us
Starting 4 processor sort at 890496880
Finished 4 processor sort at 929338867. That took 388.41986 as
Starting 9 processor sort at 936242285

Finished 9 processor sort at 971092553. That took 348.5027 as

Starting 16 processor sort at 978109126
Finished 16 processor sort at 101252471S. That took 344.15s8 me
Sorting the list:

(6 7 4 1 2 8 5 3)

Starting I processor sort at 1119622193
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Finished I processor sort at 1046974896. That took 273.52502 as

Starting 4 processor sort at 1054797480
Finished 4 processor sort at 1094519241. That took 397.2178 as

Starting 9 processor sort at 1101582612
Finished 9 processor sort at 1125786372. That took 242.0376 as

Sorting the list:
(6 7 4 1)
Starting I processor sort at 1132929674

Finished 1 processor sort at 1145004341. That took 120.746686 as
Starting 4 processor sort at 1152132853

Finished 4 processor sort at 1168264559. That took 141.31706 as

Sorting the list:

(6 7)
Starting I processor sort at 11735685420

Finished 1 processor sort at 1176647734. That took 30.82314 as
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Appendix B

Implementing the CAOS
Framework

This appendix is a guide to the source files which implement the CAOS system. The descriptions
which follow are at a much greater level of detail than those in Chdpter 5, and are intended primarily
for readers of the source code, as a supplement to the embedded documentation. It is assumed that
readers of this appendix have a familiarity with Lisp (principally ZETALISP or CommonLisp), and
have read Chapter 5.

B.1 General Programming Issues

All data structures are implemented with the dof struct mechanism. dfstruct accepts a descrip-
tion of the desired data structure, and produces a number of macro definitions which serve to create
new instances of the structure, and access and modify fields of the structure,. For example, a ship
data structure may be defined as having fields name, position, and couz-st. New instances of ship's
are created by calling make-ship; the fields of the ship structure are accessed by calling ship-name,
ship-position, and ship-course. A field may be modified by embedding a field access function
in a setf expression.

The CAOS system is intended for use in ZETALISP-compatible environments. The system was
developed originally on the Symbolics 3600 family of workstations, and was later ported to the
Texas Instruments Explorer workstation. These machines each support a ZETALISP programming
environment, but are not completely source-code compatible.

Source-level incompatibilities are handled by use of the *+ and 8- reader macros. An occur-
rence of *+Symbolics in a source file causes the next s-expression, to be read only when the file is
being luaded into a Symbolics workstation, an occurrence of S-SyboliCs prevents the following

s-expression from being loaded into a Symbolics workstation. Similar read.time conditionals for the
TI environment are introduced by 8+TI and S-TI constructs.
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B.2 Interface to CARE

In order to function properly under the CARE simulator, all CAOS code and cAos applications must
be loaded into the care-user symbol package. This package is defined to inherit from CARE those
symbols (e.g., functions, variables, and macros) which comprise the exported CARE programming
interface.

B.2.1 CARE Data Structures

The following CARE-defined data structures are used CAOS:

reote-address (Structure]

A remote-address is the global encapsulation for the address of a data structure located
on a particular processor. It may be thought of as extending the address space of a site
with additional address bits that identify the site in the processor grid.

remote-address's contain two fields: site and local. The site field identifies the site
on which the structure pointed to by the local field resides.

site (Structure)

A site represents one of the processing nodes in the grid. An instance of a site
structure is actually an instance of a site flavor, and hence, fields of a site are accessed
by sending Flavors messages. The following are messages relevant to cAos: :location,
which retuins the (z, y) coordinate of the site in the grid; :x-uite, which returns the z
coordinate of the site; and :y-sito, which returns the y coordinate.

queue (Structure)

A queue implements FIFO storage, and is used in a number of places within CARE.

In particular, packets arriving on a cARE stream are stored in a queue. The queue
structure has the following relevant fields: length, body, tail. The length field stores
the number of entries which are currently in the queue; the body field points to a list
which implements storage for the queue, the tail field points to t,e last element of the

body of the queue, and allows new entries to be appended to the ekid of queue in 0(l)
time (Access to the head of the queue also requires 0(1) time).

stream (Structure]

A stream is a virtual circuit which carries data (in the form of packefs) between processes.
Operations on streams are performed by the functions post-packet and accept-packet,
which are described below. The packets field of a stream contains the queue of packets
which have arrived on the stream. The propert ies field of a stream contains an arbitrary

property list; CAOS uses the property list to store information to help the function which
prints out streams in a human-readable fashion. Other fields of the stream are not

relevant to CAOS.
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process (Structure]

A process is the basic unit of computation in CARE. The innards of a process are
of no concern to C.os; however, it should be noted that the special variable *-"care-
process,,- is always bound to the process structure of the process currently executing.

B.2.2 CARE Functions and Macros

The following functions and macros are used by CAos:

post-packet koptional form kkey ... (Macrol

The macro post-packet is used to create new streams and new processes, and to ex-
change messages between processes. If called with no arguments, it returns a new stream
instance. All other post-packet options are controlled by the existence of various key-
words in it4 argument list. When keyword arguments are supplied, the first argument
to post-packet is evaluated to form the message to be sent.

The following keyword options are employed by CAos:

to: The value of the to keyword is a stream or list of streams to which the message will
be sent.

for: The value of the for keyword is a stream or list of streams. When the message is
received remotely, the value of this keyword will appea: in the clients field of the
message.

for-new-strea, process: These two keywords always appear together in an argu-
ment list, and take no arguments. They are included in a call to post-packet
to create new processes. The first argument in such a call is a form to evaluate
remotely to start the process. This call also requires a to keyword argument, which
must be a remote-address; the process is created on the site indicated by the site
field.
The value of the call is a streaa. A call to accept-packet on this stream will
return a packet whose value field is the default stream supplied to the newly.
created process.

alter: The value of the after keyword is a time interval, in microseconds. When this
keyword is supplied, the message will be delivered after a corresponding delay. The
purpose of the keyword is to provide for a means of implementing timeouts. A
process can cause a packet to be posted to a stream only after a specified interval;
when this packet arrives, any processes waiting on the stream will be awakened.
CAOS implements "clocked futures" using this mechanism.

tagged: The tagged keyword provides a means of tagging the message with a user-
supplied value; its principal use is in debugging and message tracing.

vith-packst-bindi.ngs stream-form bindings kbody forms (Macro]
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The with-packet-bindings macro evaluates stream-form, which must return a stream.
It then picks the first packet from the stream (or blocks the calling process until a packet
arrives), and (lambda) binds portions of the packet to the variables specified in bindings.
The format of bindings is a list. The first variable name in the list is bound to the
contents of the message; the second is bound to the clients of the message (e.g., the
streams specified by the for keyword in the call to post-packet). Additional variables
may be bound to fields which are not relevant in the discussion of cAos.

accept-packet stream [Functi:on)

The macro with-packet-bindings is defined in terms of this function. accept-packet
is called with stream bound to a strea, and returns the first packet waiting in the
stream (or blocks the calling process until a packet is available).

detprocons (Macro]

The defprocess macro is syntactic sugar for defun. Any function which is to be the
top-level of a CARE-process should be defined using detprocass. The. last argument
in the argument list of a function defined by defprocess will be bound to the default
stream for the process; thus, any function defined with defprocess must have at least
one argument.

B.3 The CAOS Support Environment

In Chapter 5, we described an extension to Flavors which implements abstract data type support for
instance variables. The files herbs.lisp, sage. lisp, datatype. lisp, and priority-quoue, lisp
comprise the framework which includes abstract data type support. In addition, these files contain
code which implements a sort of inheritance of default values of instance variables, and code which
implements substructure for instance variables.

B.3.1 Herbs-Lisp
This file implements a form of inheritance of list-structured default values of instance variables. The
Flavors class hierarchy forms a taxonomy; classes defined far from the root of the taxonomy are
more specialized than those defined near the root. Within a class, methods can be combined with
methods of the same name in ancestral classes in quite a few ways. Unfortunately, Flavors provides
no means or combining inherited values.

Consider the example of Figure B.1. The Flavor class flavor-3 is defined as a subclass of classes
flavor-1 and flavor-2. Both flavor-i and flavor-2 define an instance variable called xv-a.
What value does flavor-3 inherit as the default for iu-a?

In normal Flavors, flavor-3 would inherit '(a b c) as the default value. However, there are
situations in which the proper value to inherit for iv-a might be I (a b c d 4 f). The defherb
macro, defined in herbs. lisp, enables this sort of inheritanr.e.

Figure B.2 illustrates three possible inheritance modes for the default value of iv-a in flavor-3.
In the first example, the default value of iv-a will be ' (a b c d e f). In the second example, its
value will be '(a b c d a f g h i). In the final example, its value will be '(b d f).
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(dofflavor flavor-i ((iv-a 'Ca b c))) 0)

(dofflavor flavor-2 ((iv-a '(d * f))) 0)

(dofflavor flavor-3 () (flavor-1 flavor-2))

Figure B.A: Multiple inheritance example.

(defherb flavor-3 ((iv-a + nil)) C))

(deherb flavor-3 ((ir-a + '(g h i))) ))

(dotherb flavor-3 ((iv-a - '(a c ))) C))

Figure B.2: detherb examples.

B.3.2 Sage.Lisp

This file implements structured and abstrart data type support for instance variables. Both facilities
depend on storing special-purpose structures, known as vp-slot's, in instance variables. Descrip-
tions of the vp-slot structure, and the important functions which access it, follow (many of the
concepts used here come from the Strobe system (13]):

vp-slot [Structure]

A vp-slot contains three primary fields. The value field holds the "value" of the slot.
The datatyp. field holds an indication of what sort of objects will reside in the value
field of the slot. Finally, the user-definod-facets field holds an association list of
arbitrary facet names and values; new facets may be added at any time.

A vp-slot may be thought of as a value with arbitrary annotations (All slots are an-
notated with a datatype facet). These annotations might permit a program to reason
about the contents of the slot when necessary.

getfaceat object slot koptiona (facet 'value) errorfig novalueflg (Functhon]

The function gotfacet returns the value of facet in slot of object. Facet defaults to
va.lue, which retrieves the value field of the vp-slot. Other acceptable bindings for
facet are datatype, plus any facet in the user-defined-facegts field of the slot. If the
facet doesn t exist, and the value of errorflg is non-nil, a fatal error will occur. If the
value of the facet is *novalte*, and novaluefl is nil, the value returned from getfacet
will be nl; otherwise, it will be the value found in the facet.

putfacet object slot uoptional (facet 'value) (value '*uovalue*) errtrflg (Function]

4-479



The function putfacet puts value into facet of slot of object. If the facet doesn't exist,
it is first created. If the slot doesn't exist (e.g., the instance variable named slot doesn't
exist, or doesn't contain an object of type vp-slot) and er-rflg is non-nil, a fatal error
is signalled.

8.. (Reader Macro

Unfortunately, by placing vp-slot structures in instance variables of Flavor instances, it
becomes impossible to simply get the "value" of the instance variable (since the value is
now a vp-slot). The *. reader macro is a piece of syntactic sugar which expands to the
form (vp-slot-va.lue ... ). and hence, retrieves the value field of the slot. Therefore,
references to instance variables which contain slots can be preceded by *_ to retrieve the
actual value of the slot.

A number of macros are defined in terms of these besic functions; their function should be clear
from examination of the source code.

Abstract Data Type Support

Abstract data type support for instance variables is implemented by forwarding messages sent to
vp-slot's to the objects po-ted to by their datatype fields. Consider the example in Figure B.3.
The inclusion of the :gettable-inscanc*-va.riables option in the definition of flavor-I causes
instances of flavor-i to repond to :tv-a messages (note the ':' in the message name); instances
of flavor-I do not respond to the iv-a message.

Normally, wben a message for which no method is defined is sent, an error occurs; however, it is
possible to define an :unclaiaed-sethod rnethod for a Flavors class. The :unclaiaed-aethod is
invoked when an undefined message is sent. The file sage. lisp defines a Flavors class, sage-class,
which has just this sort of :unclained-ethod.

When an undefined message is sent to a Flavors instance which has sage-class as an ancestor,
the following steps are taken:

1. If the message is actually the name of an instance variable in the instance, the message name
is evaluated (using syeval-in-instance) to retrieve the value of the variable.

2. If the value of the variable is a structure of type vp-slot, a message is sent to the Flavors
instance stored in the datatype field of the slot. The message name is taken from the first
"argument" of the unclaimed message. The arguments in the message are the Flavors instance
to which the message was originally sent, the name of the instance variable to which the
message was sent, and all but the first of the original arguments of the unclaimed message.

Now consider the course of events when (send instance-i 'iv-a :get 'b) is evaluated:

1. The message iv-a is received by instance-1.

2. instance-I does not handle the message iv-a, so the message is forwarded to the
:unclai-ed-method method defined by sage-class.
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(defflavor association-list C)C)

(detmethod Cassocation-list :get) (instance iv key)
(cdir (assq key (getvaJlue instance iv))))

(deivax ascii-instaace (make-instance 'association-list))

(dot flavor flavor-1
((iv-a (make-vp-slot value '((a .1) (b .2) Cc . 3))

datatype assn-instance)))
(sage-class)
gettable-instance-variables)

(defvax instance-I (make-iristance 'flavor-1))

Figure B.3: A Flavor containing a slot

3. The :uaclaized-zethod code evaluates iu-a in the context of -nstance- 1, and discovers the
value to be a structure of type rp-slot. It then effectively evaluates the following: (send
asni-instance :got instance-1 'iv-a 'b).

4. The :Set method of associatiou-list is called. It uses its first two arguments to retrieve
the association list from the value field of the vp-slot to which the message was originally
directed. It then use.-i its third argument to return the value of an association from the list.

5. The value returned by the :get method of the vp-slot's datatype is returned as the value of
the original meseage.

A number of macros are defined for the convenience of programmers:

defdatatype (Macro]

Defines a new Flavors class suitable for use as an abstract data type. This is syntactic
sugar for a combining dot flavor aicI defoethod into one textual unit. For example,
the above definition of association-list could have been made by evaluating:

(defdatatype association-list "Implements a-list dictionaries."
(:get (instance iv key)

(cdx (assq key (getvalue instance iv)))))

#3 (Reader Miracro]



This reader macro accepts the name of a datatype class, and returns an instance of the
clasw. If no instances of the class have been created, it creates one and stores it in a hash
table (*sage-datatype-hash-table*). This reader macro is used in creating slots:

(defflavor flavor-I

((iv-a (ako-vp-slot value '((a . 1) (b . 2) (c . 3))
datatyp* #$ausociation-list)))

0))

B.3.3 Datatype.Lisp and Priority-Queue.Lisp

These files use the facilities defined by sag*. lisp and herbs .lisp to define a number of useful
abstract data types. In general, these ADT's respond to an :initialize message to initialize
themselves to an "empty' state, a :put message to add items to themselves, and a :get message
to remove items from themselves.

qneu* (Abstract Data Type]

The queue data type implements FIFO storage in an instance variable. The current
implementation uses lists maintained by the tconc function, defined in datatyp., lisp.
The :initialize menage empties the queue, the :put message enqueues entry on the
end of the queue, and the :get meage dequeues an entry from the front of the queue.

If the instance variable in which the queue resides has a ma-length facet, entries are.
added to the queue if-and-only-if the current length of the queue is less than the specified
maximum length.

Two values are returned by a :put message. The first value is t if there was room
to append the new entry; the second value is the value appended to the queue. Two
values are also returned by the :get mesnage. The first is the value found at the head
of the queue; the second is nil if the queue was empty before the message, or t if it was
non-empty.

All operations defined for a queue require 0(1) time.

dictionary (Abstr'nct Data Type]

The dictionary is a fuller version of the association-list ADT described above.
The :put and :gSet operations require 0(n) time, and hence, suggest the dictionary
datatype be used when the number of entries is expected to be small. In addition to
:initialize, :put, and :get messages, the dictionary also responds to the following
messages:

:add key value (Datatype M/essage]

Adds value as an additional value to be associated with key. A :got message on key will
subsequently return lists of two or more values. Requires 0(n) time.

:forget key (Dagatype Message]
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Removes the entry associated with key from the dictionary. Requires O(n) time.

:map function (Datatype Message]

Applies function to each entry in the dictionary. Function must be a function of two
arguments; the first argument will receive the key of an entry, and the second will receive
the value of the key. Requires O(n) time.

:new-id (Datatype Message]

Returns a key which is guaranteed not to be in the dictionary. This is currently imple-
mented using gensyn, and as such, requires 0(1) time.

number-o-,entries (Datatype Message]

Returns the number of entries in the dictionary. Requires 0(1) time.

:all-entries (Dataype Message]

Returns all of the entries in the dictionary, in association-list format. Requires 0(1)
time.

sortod-dict ionary (Abstract Data Type]

The sort ed-dictionary is a variant of the dictionary which keeps its entries in sorted
order, as defined by a user-supplied comparison function. It responds to the same mes-
sages as does the dictionary. The time complexity of operations defined for a sorted-
dictionary are equivalent to those defined for a dictionary.
The comparison function must be a predicate of two arguments, and must return t if-
and-only-if the first argument is "greater" than the second argument. For example, if
the keys represent timestamps, and the dictionary is to keep the keys sorted in ascending
order, the comparison function can be specified as *'<, the le-sp function.
In addition to the messages defined by the dictionary data type, the sorted-
dictionary also responds to these messages:

:greatest-entry (Datatype Message]

The :greatest-entry message returns the key having the "greatest" value, as defined
by the comparison function. Because the dictionary is kept in sorted order, this operation
requires only 0(1) time.

:next-entry n (Datatype Message]

The :next-entry message returns the key of the entry having the next 'greatest" value
to that of n. This is an O(n) operation.

hash-dictionary (Abstract Data Type]
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The hash-dictionary is a dictionary implementation which is based on hash tables,
rather than association lists. It responds to the same messages as does the dictionary
ADT. Its advantage over the dictionary is that insertion. lookup, and deletion opera-
tions are all of 0(l) time complexity; however, the enumeration message, : all-entries,
is of O(n) time complexity.

monitor (Abstract Data Type]

The monitor data type is a special purpose ADT which -aids in the implementation of
lexically-scoped mutual exclusion. Storage for the monitor is implemenced by a monitor
structure:

monitor . [Structure]

The monitor structure contains two fields: owner, which points to the process which
currently owns the monitor; and wait ng-procsoses, which is a queue of processes
waiting to obtain ownership of the monitor.

enter wakeup-stream (Datatype Message]

A proces wishing to enter a region of mutual exclusion sends this message. If the
monitor is unowned, the owner is set to the value of *oscare-proc*ss-*, and the
caller is allowed to enter the region of mutual exclusion.
If the monitor is currently owned, a dotted pair, consisting of the value of ***care-
process*** and wakeup-stream, is enqueued on the wait ing-processes queue of the
monitor. The caller then calls accept-packet in order to suspend execution. When the
caller's request reached the head of the queue, a packet will be sent to wakesp-stream,
restarting the suspended caller.

:exit (Dalatype Message]

The : exit message relinquishes ownership of the monitor, and restarts the next process
waiting to obtain it (if any).
If the wait ing-processes queue is non-empty, the first entry on the queue is dequeued.
The entry contains the process handle of the waiting process, which is placed in the
owner field of the monitor, and the stream upon which to send the wakeup message.
If the queue is empty, the owner field of the monitor is set to nil, so that the monitor
is marked as unowned.

with-monitor monitor-name &body forms [Macro]

This macro implements an error-protected, lexically-scoped mutual exclusion. Monitor.
name must be the name of an instance variable in the Flavors instance currently bound
to self which holds a monitor Upon entry to this macro, an : enter message is sent to
the monitor to gain entrance. The expressions in forms are then executed under unwind-
protect protection, such that if an error occurs during their execution, the monitor is
guaranteed to be released.
This macro is equivalent to the with.onitor macro of Interlisp-D.
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without-monitor monior-name kbody forms (Macro]

This macro is intended to be used within the scope of a with-monitor form. Its purpose
is to temporarily release ownership of the monitor specified by monttor-name (using the
:exit method), and then to reobtain it (using the :enteor method) after the forms in

forms have been executed. Typically, f orms will contain an expression that causes the
calling process to susp end for some period of time (or until a packet arrives on some
stream).

This macro is similar in spirit to the monitor. await, event macro of Interlisp-D.

priority-queue [Abstract Data Type]

The priority-queue data type and the code needed to implement it are contained on
the file priority-queue. lisp. The build of this file is a set of ZetaLisp routines which
implement a dynamic, Heapsort-style priority queue. The implementation is derived
from algorithms DELETEMIN and INSERT, from section 4.11 offI]. Insertion and deletion
from this queue both require O(n log n) time.

priority-queue (Structure]

The priority-queue structure implements storage at the nodes of the partially-ordered
binary tree. It has fields left-child, right-child, and item. In addition, for conve-
nience, it has a priority-function field which stores the priority-computing function
for entries in the tree.

exchango-nod4es top bottom (Macro]

This macro exchanges the contents of nodes top and bottom.

insert-in-queue queue node [Function]

This function inserts node, an instance of a priority-queue structure, into the tree
rooted by queue. It recursively descends into the tree, heading for the leftmoet free node
at the lowest level of the tree (creating a new level if necessary). As it unwinds from
the recursion, it exchanges nodes as necessary to maintain the partial order. The value
returned from this function is the new root of the tree, which may have changed.

rebalance-quoue queue [Function]

This function rebalances the tree rooted at queue after its root has been removed.

remove-from-queue queue (Functioni

This function removes the item from the partially-ordered tree rooted at queue, and
rebalances the tree to maintain the partially-ordered invariant. It returns two values.
the value found at the root, and a pointer to the new root of the tree.
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sorting-spec ::= (key-spec . sorting-spec) I nil
key-spec :=(key-name. field-spec-list)
field-spec-list ::= (field-spec . field-spec-list) I nil
field-spec ::= (field-computation . predicate)
field-computation :=field-arg I (field-op . field-arg-list)
field-arg-list :=(field-arg. field-arg-list) I nil
field-op :=any-lisp-tuziction
key-name ::= any-lisp-symbol
field-arg ::= field-number I ' any-valu~d-lisp- symbol
field-number := any-lisp-integer
predicate :=any-lisp-predicate

Figure 8B4: BNF Grammar~ for declaring sorting functions.

((site (s( 0 is8) 0) .0
(:aea (2 . ..phaleasp))
(:task (0 <))

Figure B.5: A sample sorting specification.

BA4 Instrumentation for CAOS
The CARZ system comes supplied with a wide variety of "instrument panels" which report how
various components of the simulated execution architecture are being utilized. Much of CAOS was
defined prior to the existence of these instruments, and the file prayda. lisp contains vestigial
r-emnants of an interim CAOS-based instrumentation package. This package is no longer in use,
and it will not be documented here, although it is part-of the CAOS sources. There are, however,
CAos-Ipeciflc instrument panels which are still in use. These panels are documented in this section.

B.4.1 Scrolling-Text-Panel.Lisp

The file scrolling-te.-t-panel . lisp contains an instrument which displays information in a sorted
order in a ZETAL!SP-defined window known as a ty: scroll-window. Such windov. s are designed
to display a strurtured representation of data; new lines of information may be added or deleted
dynamically, and the window may be scrolled vertically if more information is being displayed than
can fit in the window.

The scrolling-toxt-panel is a tv: scroll-window whose sorting order and display formatting
commands are specified by a simple. declarative grammar. The declaration of the sorting function
is specified in the: sor - - 1.y instance variable of the panel: the formatting function is specified
by the :printed-by and :format ted-by instance variables. We first describe the grammar as it
pertains to sorting.
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The sorting grammar is described in BNF format in Figure BA4; 1an example from CAOS appears
in Figure B.5. Unqluoted numbers used in field-number positions refer to corresponding elements of
a vector in which information which drives the sorting and display functions resides.

The sorting declaration in Figure B.5 constructs three sorting functions, indexed respectively by
the keywords :site, :agent, and : task. The :sits sorting function is compiled into the following
pieces of Lisp code: 2

(detun too-site-sorter (item-i iten-2)
(let ((entry-i (array-leader item-i C1+ ty:scroll-item-leadei-offset)))

(entry-2 (aix-ny-leader item-2 (1+ tv:scroll-item-leader-offset))))
(< (4 C (nth 0 entry-I) 16) (nth 1 entry-i))

(+ (e(nth 0 entry-2) 18) (nth I entry-2)))))

The : a6 8nt sorting function is a refined version of the :site sorting function. It expands into:

Cdetunu too-agent-sorter (item-i item-2)
(let ((entry-i (axray-leader item-1 (1+ ty:scroll-item-leader-ottset)))

(entry-2 (arrany-leader ites-2 (1+ tv:scroll-itea-leadir-offset)))
(key-2 (array-leader it em-2 ti: acroll-items-leader-oftset)))

(cond ((too-site-sorter iten-i itea-2) t)
((equal itemt-i ititz-2)
(cond ((%emq koy-2 '(:sits)) nil)

(t (aiphalessp (nth 2 entry-1) (nth 2 ontry-2))))))))

The :task sorting function is further refined, and expands to-

(detun too-task-sorter (item-I item-2)
(let ((entry-i (array-leader item-i (1. tv:scroll-ite.-l*&der-oftset))

(entr-? (array-leader itemt-? (1+ ty: ecroll-itest-leader-ottset)))
(key-? (array-leader item-? ty: mcroll-items-leader-ofset)))

(cond ((too-agent-sorter item-i item-2) t)
((equal item-i item-?)

(cond ((memq key-? '(:sit* :agent)) nil)
(t (< (nth 3 entry-i) (nth 3 tntry-2)))

We now discuss the language with which formatting functions are defined. Lines of text are
output to scrolling-text-panels with the function format; in order to use this function, we
must have a way of choouing both format control strings and the expressions which are evaluated
to generate arguments for these control strings.

I I this figure, Land mU Figure B.S. tokens. in this font are non-terminals, and tokens inthis f out are terininals.
Occurrences of '." are Lisp 'coingfl dots," thus., where the grammar would ordinarily demand statements of the
form (a . (b . (c . nil1))), it is acceptable to supply the form (a b 0).

2The arguments itess-1 and i.an-2 are bound to instances of tv.scrli-lie-itin structures. The inter-
nal representation of these structures is unimportant, except that arbitrary application-propram information may
be stored in their atrmy lea der sections. The first word of available storage in the array leader is found at



print-spec :=(key-spec . print-spec) I ail
key-spec ::= (key-name.- field-spec-list)
field-spec-list ::= (field-computation,. field-spec-list) I nil
field-computation :=field-arg I (field-op. field-arg-list)
field-arg-list ::= (field-arg. field-arg-list) Inil
field-op :=any-lisp-tunction
key-name:: any-lisp-synbol
field-arg ::= field-number I I any- valuie-1 isp-Symbol
field-number:: any-lisp- int agar

Figure B.6: BNF Grammar for declaring printing functions.

((:ite "SITE--D-'D44)
(:agent 'I 'A ('D run, 'D wait)")
(:task 'I 'A -1-1))

((:site 0 1)
(:sgent 2 (car 3) 4 5)
(:taak 4 3 5)

Figure B.7: A sample formatting specification

Format control strings are chosen by indexing into an association list stored in the formatted-
by instance variable of the panel. Lisp expressions which generate the arguments for format are
created by parsing expressions defined by the grammar in Figure B.6 and are found in the printed-
by instance variable of the panel. The contents of these two instance variables, in an example from
the CAOS instrumentation, is illustrated by Figure 13.7. The panel defined by the specifications
in Figures 13.5 and B.7 will display sites in column-major order; within each site, agents will be
displayed alphabetized by name; within each agent, tasks will be displayed ordered by arrival time.
For example:

XERGESORT-NANAGER-1 IN1ITIALIZED (0 rmn, 0 wait)
KERGESORTE-1-1 INITIALIZED (I run, 3 wait)

RUNNING 345700 NEIGHBOR
NEVER-RUN 345792 M.ERGESORT

SITE-1-2
MERGESORTER-1-2 INITIALIZED (0 ruin 0 wait)

B.5 CAOS Structures and Macros

The file czardef ns . lisp contains macro and structure definitions for the rest of the CAOS system.
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roquas-3asaag* (Structure]

The requost-.essage structure is a list which defines the contents of messages sent
using the various post operators of CAOS.

response-nessage (Structure]

The reaponsa-zs=age structure is a list which defines the contents of messages sent
as responses to value-desired messages.

cao-tim. (Macro]

This macro retrieves the current simulator time, which is measured in simulator clock
units. Presently, this figure is measured in 10 nanoecond units.

r=nabls-item (Structure]

The rinnable-i .m is the CAOS scheduler's handle on a process. Most of its structure
was described in Section 5.4. The panel-entry field holds the tv:scroll-window line
entry of the process.

contract [Resource]

Resources are Lisp objects which must be explicitly allocated and deallocated. This is
counter to the normal Lisp philosophy, but is quite useful when the extent of an object is
known. The advantage of declaring objects as resources is that large numbers of unused
copies of the objects aren't accumulated to be reclaimed only when the garbage collector
is run. The contract resource allocates and deallocates runnable-iteA's.

care-s it -scrolling-panel-.ntry [Structure]

This structure is the vector which holds information for sorting and formatting cars-
sit* entries in the scrolling- .ex-panal. In figures B.5 and B.7, this structure is
referenced by printing and sorting specifications keyed by :site. The fields of the
structure are:

x, y: Coordinates of the site in the processor grid.

atate: The condition of the site.

agent-scrolling-text-panel-entry (Structure]

This structure is the vector which holds information for sorting and formatting agent
entries in the s-..-:ll ng-text-panel. It is referenced by printing and 3orting specifi-
cations keyed by : agent. The fields of this structure are:

x,y: Coordinates of the site upon which the agent is located.

nasa: The name of the agent.
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state: The condition of the agent.

nrun: The number of runnable tasks in the agent.

nwait: The number of suspended tasks in the agent.

task-scrolling-panel-entry Structiure]

This structure is the vector which holds the information for sorting and formatting task
(proces) entries in the scrolling-t ext-panel. This structure is referenced by printing
and sorting specifications keyed by :task. The fields of the structure are as follows:

x, y: Coordinates of the site upon which the task is executing.

name: The name of the agenc in which the task is executing.

entry-tin.: The simulator time at which the task started.

state: The current state of the task.

message: The name of the message being executed by the task.

future (Siructure]

A future is a special object which represents a promise of a value to be returned by a
remote computation. It has the following fields:

value: When the future has a value, it is placed in this field.

a-g-id: The unique id of the message which associated with the computation which
will return a value to this future.

waiting-processes: The number of processes waiting for the future to have a value.

waiting-process-list: The list of processes waiting for the future, in tconc format.

single-assignment: A boolean field; true if the future can only be assigned a value
once.

original-nsssage: The contents of the requost-message message sent to start the
remote computation which will return a value to this future. Used when a clocked,
single-asignment future is repoeted.

destinations: The destination agents to which the original message was sent; used by
repost.

multi-!utur* (Siructure]

A multi-futurs is a collection of futures. It is returned by the value-desired, multipoat-
style messages. A mult:i-future contains a lists of satisfied and unsatisfied futures.
Initially, all futures in a multi-future are unsatisfied; as values of remote computations
are received, unsatisfied futures are given values and moved to the list of satisfied futures.
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B.6 Declaring CAOS Agents

The file czardecl, lisp contains routines to declare sites and agents.

detfsit [Macro]

This macro makes it possible to declare Flavor classes which implement site-global stor-
age within cAos. detsite is defined in terms of detherb, and thus, it is possible to define
instance variables within site instances which support abstract data type operations.
It is conceivable that if CAOS were ever implemented on a heterogeneous array of pro-
cessors, there would be a number of site types, perhaps defined in a taxonomy.

vanilla-site (Site]

Instances of vanilla-site implement site gl. Jal storage. Each instance has the follow-
ing instance variables:
static-agent-strean-table: Contains a dictionary which maps static (named) agents

to their input stream addresses.

uniesolved-agen-streaa-table: Contains a dictionary which maps the names of
remote agents not yet known during initialization to the addresses of streams in
local agents which have requested the addresses of the unknown remote agent.

local-agents: A dictionary which maps the names of local agelits to their addresses.

fre,-process-queue: A queue which holds information allowing free processes to be
reused in preference to creating new processes.

care-site: Holds a pointer to the CARE site structure for the site upon which the
care-site is located.

locale: Holds a CARE-defined structure which is created by ake-locale, and which is
updated by update-locale. Each call to update-locale modifies the structure so
that a call to locale-site returns the least-recently-referenced site in the locale.
This is a simple approach to load-balancing.

inconing-streas: Holds the stream upon which the site manager listens for site-
oriented requests.

det agent-keyword (Macro]

This macro defines the syntax for a new keyword used in a call to de, agent (see below).
The keywords described in Chapter 4, plus a number of keywords not described, are all
declared through the use of deagen:-keyword.

deiagent [Macro]

The det agent macro, which is defined in terms of detherb, is the basic form by which
new agents are declared. It is described in detail in Chapter 4.
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dot agent-method (Macro]

The detagent-m thod macro is syntactic sugar for defmethod, but has the advantage
of being able to define the same method for multiple message names.

clock [Absiract Daia Type]

The clock ADT responds to the :rearm, :tick, ;.nd :stop messages. The value field
of a vp-slot of the clock datatype holds a list of messages to be executed when the
clock "fires."

vanilla-agent [Agent]

The vanilla-agent is the most basic agent in the system. It has the following instance
variables:

loca.l-procms-strean-t able: A dictionary which maps from a process handle to a
utility stream the process uses to wait for wakeup messages.

outstanding-uessage- table: A dictionary which maps from ids of messages to their
amociated futures.

raunable-process-list: A priority queue which implements the scheduling policy de-
fined for the agent.

scheduler-lock: A monitor data type which is used to implement mutual exclusion
around routines which modify the agent scheduler database.

process-table: A dictionary which maps from CARE process handles to CAOS
runnable- it eans.

salf-Adress: The stream upon which the agent's input process listens for requests
and responses from other agents.

priority-quue-context: Holds information for creating nodes in the runnable-
process-list priority-queue.

care-site: Points to the care-site structure for the site upon which the agent is
located.

symbolic-nane: Holds the name of the agent. Statically-created agents are named by
the application program; dynamically-created agents are named by CAOS, using
gonsym.

agent-scheduler: Holds the CARE process handle of the process which is currently
performing the duties of the agent scheduler.

running-processes: Holds a list of runnable-itae's which represent processes handed
off to CARE for execution.

symbolically-referenced-agents: Holds a list of other agents to be referenced by
name by methods executing within the context of the agent.
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initial-forms: A list of expressions to be evaluated after CAOS has been initialized.

The purpose of these forms is to initialize an application.

:select-process-fifo dtem-i item-2 (Method of vanilla-agent]

This method implements FIFO scheduling of tasks within an agent. It is called as the
priority function for the priority-queue stored in the runnable-proceus-liat. Pri-
orities are derived by comparing the time-stamp fields of stem-I and item-2, which are
runnable-iten's.

process-agenda-agent (Agent]

The proceas-agenda-agent is a subclass of vanilla-agent. It differs from vanilla-
agent in that certain message names may be given execution priorities. Such priorities
are defined by specifying message names in order in a list stored in the process-agenda
instance variable, messages at the front of the list have higher priority than those at the
end of the list.

select-procass-agenda-t=estamp stem-I item-2 (Method of procass-agenda-agent]

This method implements "agenda-based" schedulibg of tasks in an agent. It is the prior-
ity function for the runnabl*-procesa-list. Priorities are derived by first comparing
the meaage-nman fields of stem-I and tiem-2, if these fields are the same, the function
then compares the time-stamp fields, as in the FIFO scheduler above.

B.7 Initializing a CAOS Application

The file czarinit .lisp contains the code which initializes CAOS at the start of a run Initialization
occurs in two distinct phases: one, static, before the CARE simulator is started, and the other,
dynamic, just after.

The first set of functions, macros, and methods in czarinit. lisp is involved in static initializa.
tion. During this phase, the application initiali:ation file (see Figure 4.4 and Appendix A) is read
and interpreted. As a result of interpreting this file, all statically-declared agents are created on the
appropriate sites, and the messages which initialize the application once CAOS is running are stored
away.

:iit (:after Method of care-site]

During the static phase, new instances of car-site Flavor instances are created. The
: nit method is primarily responsible for initializing all of the abstract data types which
are part of the care-site.

:Int (:after Method of vanilla-agent]

When a new agent instance is created, the : init method initializes a number of ab-
stract data types, and also adds an entry to the appropriate car-s3te's local-agents
dictionary.
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saks-initial-agent agent-class global-name care-sate (Macro]

This macro is invoked when the caos-initialize form is interpreted. Agent-class is
the name of an agent class as defined by def agent. Global-name is the name by which
thi imstance of the agent class will be known throughout the processing grid. Care-sate
is a twc-.-lement list specifying the x and y coordinates of the car-site upon which
the new agent will be created. When the macro is executed, an instnace of agent-class
with name global-name is created on care-sie.

ait ial-agnt-record (Structure]

This structure defines the a three-tuple with fields name, class, and location. Instances
of this tuple make up the agent-nstances argument to the caos-initialize macro
(below). The initial-agent-record also defines the argument list to ak-initial-
agent.

caos-initialize agent-instances initial-messages (Macro]

Calls to this macro are the means by which CAOS applications are initialized. Agent-
instances is a list of initial-agit-record structures. !nstsal-meSsages is a list of
expressions to be evaluated when cAos has finished initializing.

When a caos-iitialize form is evaluated, four major activities occur.

1. All staticaly-declared agents are created by mapping over agent-instances and call-

ing make-initial-agent on each element.

2. An agent of class initial-agent is defined. The initia3l-agent class is asubclass
of vanilla-agent which makes reference to all other statically-declared agents.

3. An instance of the initial-agent claw, called 007 is created on site (1, 1).

4. The initial-messages argument is used to define an : initial-f orm method for the
class initial-agent.

The remainder of czarinit. lisp is devoted to dynamic initialization. The necessary site and
agent instances were created during the static phase; during the dynamic phase, these structures
must be linked up with CARE. Dynamic initialization consists of starting the site manager processes

in each of the sites, starting the input monitor and scheduler processes in each of the agents. and
exchanging the names and addresses of each of the agents in order to resolve symbolic references.
Dynamic initialization is completing by sending agent 007 an : .titial-fors message.
start-czar initializer-stream (Process]

The start-czar process is the first process run once CARE starts. It drives all dynamic

initialization tasks, as follows:

1. Creates a site manager process in each site.

2. Waits for each site manager process to return the address upon which it listens for
requests.
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3. Creates a process on each site that contains a statically-declared agent, whose task
is to initialize those agents.

4. Waits for each site containing statically-declared agents to indicate its agents are
initialized.

5. Sends the : initial-form message to the agent named 007.

start-site initializer-stream site-stream (Process

This process ts the CAOS site manager. Upon start-up, it sends the value of site-stream
to sin:alizer-tream (upon which the start-czar process is waiting). It then enters an
endless loop in which it responds to service requests directed to stie-stream. The specific
services imr!emented by the site manager were discussed in Section 5.2.

start-agents all-care-sites-list start-agents-stream [Process]

This process is responsible for initializing statically-declared agents on each site. For
each agent, it does the following:

1. Starts the input monitor process.

2. Broadcasts a :ew-initial-agent-online message, containing the agent's name
and the address upon which its input monitor process listens, to all other site
managers in the grid (the value of all-care-sates.list).

3. For each agent named in the agent's symbolica.lly-refr enceod-agenta instance
variable, sends a :request-symboic-ret.rnc a message to the site manager, and
waits for a response.

4. Sends a message to the start-czar process indicating that the site is ready to run.

B.8 The CAOS Runtime System

The file czar. lisp contains the "runtime" system for CAOS. The functions documented in sections
4.3 and 4.4 are implemented by in this file. In what follows, we document those functions upon
which the functions in these sections depend.

agendize future (Defun.Method of vanilla-agent]

This is the low-level function used to suspend a process until future receives a value.
It sets the calling process's state to :suspended, adds the process's runnable-iten to
the list of processes waiting for future, sets the context field of the runnable-item to
be the process's wakeup stream, and sends to itself the reschedule message, which
invokes the scheduler to put the process to sleep. Upon waking up, it sets the procesa's
state to :rnning, and returns to its caller (typically, va.lu,-future).

multi-agandize multi-future (Defun-AMethod of vanilla-agent]
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This function is the multi-future version of agendize.

*reaote-address-numerat ing-functions* (Variable]

This variable holds an association list which maps ZETALISP data types into a function,
which when applied to an object of the associated type, returns a list of remote addresses.
This allows application programs built on top of CAOS to represent collections of agents
in forms other than lists.

coerce-destination dent-stream (Defun.Method of vanilla-agent]

This function coerces des-stream, which may be a remote address, a future, or the name
of an instance-variable in self into a stream.
If dest-stream is a remote-address, it is returned unmodified. If dest-stream is a symbol,
it is evaluated in the context of self, and is expected to evaluate to a remote-address
(this is the mechanism by which application programs are able to refer to statically-
declared agents by name). Finally, if dest-stream is a future, coerce-destination
calls value-future to retrieve the destination remote-address.

list-of-remote-addresses list (Defun-Meihod of vanilla-agent]

This is the enumerating function for lists of remote addresses.

enumorat e-dstinations remote-addrejes ( Defun-Method of vanilla-agent]

This function uses *remote-address-enumerating-functions* to coerce remote-
addresses into a list of remote-address's.

stream-send dest-stream pronly flags message ar9g (Defun-Method of vanilla-agent]'

This function is a common subfunction used by CAOs-defined posting operators. It uses
the facilities of CARE to send message and args to dest.stream with CARE priority priority.
Flags is a list which controls the operation of stream-send. The following symbols may
be included in flags:

:no-retura -- Causes stream-send to send a side-effect message.

retuxn-future ---Causes stream-send to create a future, assign it a unique identifier.
send the message with solf-address as the return address, and return the new
future to the caller.

return-ulti-f uture -Like : return-futur., but causes strea-send to create and
return a aulti-future instead of a future.

:single-assigna*nt -Causes stream-sond to create a sngle.as3gnmenl future, a
future whose value can only be set once.

ma.ke-and-initia.lize-future type (Defun-Method of vanilla-agent)
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This function creates a new future of type type (either future or multi-fluture). It also
generates a unique identifier for the future in the agent's outstanding-messago-table,
and places the future in the table, keyed by the unique identifier.

format-strea a-request :d stream message args (Function)

This function formats a message and its arguments for transmission to another agent.
Id is the unique id of the message; stream is the stream to which answers should be
directed.

agent-input-process agent request-stream (Process]

This process is the process which monitors self-addross for requests and" responses
from other CAOS agents. It is created exactly once per agent, and performs the following
initialization steps:

1. Sets self-address to the value of request-stream.

2. Creates the agent scheduler process.

3. Arms all clocks in the agent.

After initializing the agent, agent-input-process enters a loop, in which it waits for
messages directed to self-address, and then processes them accordingly.

:handle-request request for-effect (Method of vanilla-agent]

This method is invoked by the input monitor process when a request message is received.
It allocates a new runnable-item, and fills in its fields by copying from request, a
request-message structure.
It then sends the new runnable-itea to the scheduler process. If the scheduler is
idle when this method is invoked, the ruanablo-it*. is sent to the proces in a CARE
menage (this reawakens the idle scheduler); otherwise, the runnable-item is simply
enqueued on the agent's rannable-procss-list.

:handle-response response (Method of vanilla-agent]

This method is invoked when the input monitor process encounters a reponse-,ussage.
It first checks if the response is directed towards a futuxre or a multi-future. In the
latter case, it calls upon the :handle-sulti-reponse method to process the response.
In the former case, it does the following:

1. If the future associated with the response is a single-assignment future, the future
is removed from the agent's outstanding-,essage-table.

2. The value is removed from the response, and placed in the value field of the future

3. The satisfied field of the future is set to t.

4. The :run-process3S method is invoked, which restarts all processes waiting on
the future.
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:handle-ulti-reponse multi-future value source [Method of vanilia-agent]

This method is called when a response to a multi-future is received. Source is a cons
of the sending agent's name and self-address; individual future's in the multi-future
may be keyed by either.

The method use source to find the appropriate future in the multi-future's
unsatisfied-future list, and places value in its value field. If the multi-future
is in : any wakeup mode, all processes waiting on the future are reawakened; if the
multi-future is in :all mode, the waiting processes are reawakened only if there are
no more unsatisfied future's.

agent-scheduler agent scheduler.proces3-st ream (Process]

This process is the CAOS scheduler process for agents. It is written as a loop which
performs the following operations:

1. If the scheduler has previously determined that there are no runnable processes, or
if there are requests waiting in the runnable-process-stream, the scheduler tries
to get the next request from the runnable-process-stream. If neither condition
is true, the scheduler skips to step 3, below.

2. If the message is a symbol, it is the name of a clock which has just ticked; in this
case, the scheduler sends the :tick message to the clock.
If the message is a runnable-iten, it is a request to the scheduler to perform an
operation on the associated process. To be sent to the scheduler, the state of the
process must be either :suspended or :never-run. In either case, the scheduler
adds the item to the runnable-process-list.

3. The scheduler next tries to hand to CARE for execution as many processes as it can.
The number of processes it is allowed to run at any one time is determined by the
value of *numbr-of-runzing-agent -procesa aes*.

4. Finally, the scheduler checks to see if any special conditions are outstanding. One
special condition is that the user has requested a breakpoint (e.g., to perform some
debugging with the CARE clock shut off). The other special condition is that it
is about to be too late to perform an immediate garbage collection; in this case,
the scheduler shuts off the CARE clock, and calls gc-imuediately, the ZETALISP
function which invokes the garbage collector.

:add-to-runnable-process-list stem (Method of vanilla-agent]

This method enqueues a runnable- item on the agent's runnable-process-list. If the
CAOS instrumentation package is enabled, it also adds a line representing the process to
the scrolling-t ext-panel.

:choose-next-runnable-item (Method of vanilla-agent]

4-498



This method removes the highest-priority runnable-item from the runnable-process-
list, unless the number of processes already handed to CARE is greater than or equal
to *nunber-oi-agent-running-process es.
If the CAOS instrumentation package is enabled, and an item was removed from the
queue, this method also removes the line representing the process from the scrolling-
toext-panoel.

schedule-nert-process return-new-items (Method ofvanilla-agent]

This method is called by the scheduler process to hand the highest-priority process to
CARE for execution. If the state of the process is :never-run, the :create-new-process
method is invoked to create a new process. If the state of the process is :rannable, the
process is reawakened by calling the function resume-old-itea.

:resch*dule future (Method of vanilla-agent]

This method is invoked to suspend a process until futare has a value. It first updates
the CACO instrumentation, then tries to run as many processes as possible (to keep the
processor as busy as possible), and then suspends, waiting for a packet on its wakeup
stream. Upon reawakening, it updates the CAOS instrumentation once again, and returns
to its caller (typically agendize).

:create-new-process runnable-item (Method of vanilla-agent]

This method is called to create a new application-level proc. It preferentially recycles
a process waiting in the free-process-queue of the care-site associated with the
agent. If there are no free processes available, it creates a new process using the facilities
of CARE.

mesage-handler agent rnnable-item wakeup-stream (Process]

All CAOSpoetings are executing in processes in which aessage-handler is the top-level.
This process is a loop, which does the following:

1. Executes the message and arguments contained in runnable-.tem, an instance of a
runnable-ites.

2. Tries to pull the next runnable-item in state :never-ruu off the runnable-
process-list. If there is such an item, message-handler returns to step 1 with
runnable-item set to the new runnable-ite.

3. Otherwise, the process queues itself on the free-process-queue of its associated
care-site, to be reused later. It does this by calling the function wait.-for-an-
item.

czar-initializ, dimensions file aux-display (Function]

This function is called to start CAOS. It initialize a number of global variables, sets

up the CAOS instrumentation, and reads the file, the application file which contains the
caos-initiulize form.
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Abstract

This paper describes the design of a new hardware solution for the cache coherence
problem in large scale shared memory multiprocessors. The protocol is based on a
linked list of caches and does not require a global broadcast mechanism making our
solution scalable. Directory based solutions proposed earlier also do not require a global
broadcast mechanism. However, our distributed directory protocol has a lower cost and
potentially better performance than the fully mapped directory based protocol. We
do not assume that the network preserves the order of messages and allow adaptive
routing. Our solution also allows an efficient implementation of locks. This paper
describes the design and implementation details of the distributed directory protocol.
Performance issues will be covered in a future paper.

1 Introduction

Cache coherence is an important well known problem in shared memory multiprocessor
systems. If multiple caches are allowed to simultaneously have copies of a given memory
location, a mechanism must exist to ensure that all copies remain consistent when the con-
tents of that memory location are modified. The cache coherence problem may be solved
through hardware or software. Hardware based protocols to solve the cache coherence prob-
lem are well understood for bus based shared memory architectures. Bus based hardware
cache coherence protocols are also called snoopy cache coherence protocols [3]. The term
"snoopy" is derived from the fact that each cache must watch all traffic on the bus and
take appropriate action for addresses that are present in the cache. However the shared bus
limits the number of processors that can be connected to the bus without saturating it. To
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2 DIRECTORY BASED SOLUTIONS FOR THE CACHE COHERENCE PROBLEM

support scalable shared memory architectures, the cache coherence protocol needs to be'able

to work in the absence of a global broadcast mechanism. Directory based schemes [1, 71 are

a possible solution in this environment. We present some drawbacks of these schemes in

section 2.
This paper describes a new distributed directory cache coherence protocol. The infor-

mation about which caches have copies of the data is decentralized and distributed among
the cache lines. Our implementation, like the fully mapped directory scheme, tracks any
number of cache copies and never requires invalidates to be sent to all caches in the system.
It has a lower cost and potentially better performance than the fully mapped directory based
coherence scheme for expected memory and cache sizes. In the fully mapped scheme, the
size of the memory required to hold the state information is O(MN), where M is the size
of main memory and N is the number of caches. In our scheme, on the other hand, the
size o ;he memory required to hold the state information is only O(M log N). We allow
adaptive routing (so that network performance may be more robust) and do not assume
that the network connecting caches preserves the order of messages. The network traffic
generated for invalidations is reduced by a factor of two in our implementation compared to
a fully mapped directory scheme for networks that do not preserve the order of messages.
An important feature of this protocol is that locks can be supported very efficiently with
minimal extra cost.

This paper is organized as follows. Section 2 describes the current directory based so-
lutions for cache coherence problem. Section 3 describes our distributed directory cache
coherence protocol. Section 4 talks about replacement of lines and potential race conditions.
In section 5 we consider network issues, potential deadlocks and their handling. Section 6
describes how we intend to validate the correctness of our protocol. Section 7 describes the
implementation of locks and section 8 states our conclusions and future work.

2 Directory Based Solutions for the Cache Coherence
Problem

We will assume a very general architecture in our discussions. Figure I describes the basic
architecture. Each node consists of one or more processing elements (P), a cache (C), a net-
work controller (NC) and part of the distributed global memory (DGM). For the distributed
directory protocol we do not assume that the network preserves the order of messages. This
allows adaptive routing making the network performance more robust. The directory based
protocols described in the literature so far do not allow out of order message arrival.

In the directory based protocols there is a directory "tag" associated with each line in
main memory. This directory is used to hold information about which caches have copies of
the line. In the fully mapped centralized directory scheme [7], the directory has N valid (or
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3 THE DISTRIBUTED DIRECTORY CACHE COHERENCE PROTOCOL

the network traffic is lower1 . However, if the buffer overflows, the requests still have to be

bounced back. Requiring traitsactions to be serialized through the centralized directory (and

the locking of lines while servicing a request that requires a coherency-related transaction)

could make the directory a bottleneck.

To reduce the amount of storage required, a number of modifications to the above scheme
may be made. However, these modifications either require the implementation of an efficient
broadcast mechanism contradicting our assumption about scalable systems, or may generate
excess network traffic along with performance penalties. For example, one simple modifica-
tion is to have i pointers per line in the directory. Each pointer may point to a cache that
has a copy of the line. If more that i caches have copies of the line, a broadcast has to be
done to all caches to service a write miss. The memory line has to be locked until all caches
acknowledge the invalidation. This is classified as a Dir,B scheme [1], where i is the number
of indices kept in the directory and B stands for broadcast. A DiriNB scheme, where i is
less than the number of caches and NB stands for no broadcast, is possible also. In such
a scheme, at most i caches can have copies of a line at the same time. In the case where a
read miss occurs when i caches have copies of the line, the directory has to invalidate one
of the copies before the data can be supplied to the requesting cache. This might result in
"thrashing" the line between caches.

3 The Distributed Directory Cache Coherence Pro-
tocol

Based on a linked list of caches [6], we now describe the distributed directory protocol.
We shall first provide the basic idea of the protocol and then explain it in further detail.
Each line in the main memory and the cache has a cache-pointer field associated with it.
This pointer can address any cache in the system. The directory services read or write
request by changing cache-pointer in the directory entry associated with the line to point to
the requesting cache. If the old value of cache-pointer is nil, a proper reply is sent to the
requesting cache. If the old value of cache-pointer points to a cache, the request is forwarded
to that cache. In case of read misses the cache replies to the requesting cache and the list
now includes the requesting cache. In case of write misses, the list has to be invalidated
before a reply can be sent to the requesting cache.

The amount of memory required for the pointer is log N where N is the number of caches.
The total amount of memory needed is thus O(M log N + Nc logN) where M is the total
size of main memory, N is the number of caches and c is the size of each cache. The above

'If there is contention at the directory and the the network is lightly loaded, then a buffer may degrade
the performance instead of improving it. This is because the directory controller would have to spend time
managing the buffer and thus further increase the contention at the directory.
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3 THE DISTRIBUTED DIRECTORY CACHE COHERENCE PROTOCOL

expression can be written as O(M(1 + k) log N) where k is Nc/Nm (m being the amount of

memory per node). We interpret k as the ratio of the size of cache memory per node to the
size of main memory per node.

Assuming a constant.value of k for the machine, the amount of memory required for
the distributed directory scheme is O(M log N). We can expect then, that the cost of
implementing the distributed directory scheme is significantly less than the fully mapped
scheme-which requires O(MN) amount of memory.

3.1 The Protocol

Cache coherence protocols can be effectively explained using state diagrams. Each line in
the cache has a local state associated with it. Similarly, each line in main memory has a
global state associated with it. The local states and the global states are used by the cache
controller and memory controller respectively to take appropriate action. Memory requests
issued by the processors may be serviced by their caches. In case of cache misses, the cache
controller issues requests to the appropriate main memory module. A reply is subsequently
received, either from the main memory, or from another cache. The communication between
the caches and the main memory may be considered to be similar to asynchronous message
passing. A read miss occurs when the cache does not have a valid copy of the line. A write
miss occurs when the cache does not have the line in state 'exclusive'. The cache controller
sends a read-miss 'RM(c)' signal or a write-miss 'WM(c)' signal to the main memory on read
and write misses. Before a miss signal is issued by a cache controller, a line associated with
the address is allocated in cache memory. The miss signals include the address of the source
of the request '(c)'.

Figure 2 shows the global state diagram for the distributed directory protocol. Table 1
shows the actions taken by the main memory to respond to the signals. A line in main
memory is originally in state absent (A) (since it is absent from all caches). Each request
causes the value of cache-pointer to be updated to point to the requesting cache. If the line
is absent from all the caches, the main memory sends a reply and changes its state to present
(P) (since it is now present in at least one cache). Otherwise the request is forwarded to
the last cache to make a request for the same line. If the line is absent from all caches, the
directory sends a write-miss-reply 'WMR(d)' or a read-miss-reply 'RMRD(d)' for a write-
miss or a read-miss signal respectively. A read-miss-reply 'RMRD(D,d)' consists of the data
(d) and the address (D for Directory) of the object replying to to the request. A write miss
reply 'WMR(d)' consists of the data. In directory based protocols, special care has to be
taken to handle races properly. The state R is used to handle races properly. We defer the
discussion about races to section 4.

Figure 3 shows the local state diagram for the distributed directory protocol. Table 2
and table 3 show the actions taken by the main memory to respond to the signals. A line
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A

A: Absent from a1 caches
p P: Prmnt In one or more ceches

R: Race

R

Figure 2: Global State Diagram

I State I Signal J Next State I Actions

A RM(c) P p=c; RMRD(d) to c
A WM(c) P p=c, WMR(d) to c
P RM(c) P Old-p = p

p=c; RMR(D,d) to c
P WM(c) P Old-p = p

p=c; WMR(d) to c
P Re(c,d); c=p A mer = data
P Re(cd); c!-p R mer = data
P RMFB(c) R mer = RMR(c)
P WMFB(c) R mem = WMR(c)
RB RMFB(c) P RMR(D,d) to c
". WMFB(c) P WMR(d) to c
". Re(cd); c!=p p signal = mer

mem = data
service signal

Table 1: Global State Transitions.
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I : InvaildRI: lclupve

SII: SharedWR Writing or Rading

PSW : Pending Signal WritPSR : Pending Slgnai Read
X : Replae or Invlidate
P : In Progre

Figure 3: Local State Diagram For Main States

is originally in state invalid (I). A read 'Rd' or a write 'Wr' request from the processor
causes the state to change to writing-or-reading WR' and a proper signal to be sent to the
appropriate main memory module as show in table 2. On a read-miss-reply, the value of
cache-pointer is set to be the address of the object sending the reply. This causes a linked
list of caches that contain the data in shared state to be formed.

Figure 4 illustrates the process followed to set up the linked list. Consider the case where
cache C1 has a read miss for a line followed by caches C2 and C3. As show in fig. 4(a), cache
C1 sends a read-miss signal to the directory. The cache-pointer of the line in the directory is
made to point to Cl. Since no other cache has a copy of the line, the main memory sends a
write-miss-reply to Cl. When C1 receives the reply the line is loaded into the cache in state
"exclusive". Now when cache C2 sends a read-miss to the directory, a read-miss-forward
'RMF' signal is sent to C1 as shown in fig. 4(b). The cache-pointer in the directory now
points to C2. When C1 receives the forwarded signal it changes its state to "shared" as
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State I Signal [Next State I Actions
I Rd WF RM(c)

I Wr WR WM(c)
I IF(c) I 1A to c
I RMF(c,d) I RMFB(c) to dir
I WMF(c,d) I WMFB(c) to dir

WR RMRD(c,d) E Proc =data
cache =data; p = c

WR RMR(c,d) SH Proc =data

cache =data; p, = c
WR WMR(d) E cache =proper data
WR WMR-data(d) Wa-i cache =proper data
WR WMR-performed Wa-i

Wa-i WMR-data(d) E cache =proper data
Wa-i WMR-performed E proc = data
WR RMF(c) PSR PS = RMR(c)
WR WMF(c) PSW PS = WMR(c)

E Rd E Proc =reply
E Wr E cache =data
E RMF(c,d) S RMR(6'.d)
E WMF(c) I WMRWd) to c
E Rc RIP Re(c,d)

SH or S Rd same Proc = reply
SH RMF(c) S RMR(c-ielfd)
SH WMF(c) I if (p=c) WMR(d) to c

else WMR-data(d) to c
WMFC(c) to p

S WMFC(c) I It (p=nil or p = c)
WMR-performed to c
else
WMFC(c~d) to p

SH Wr WRIIP I(c) to p
SH Re RIMP I(c) to p

S; p!= nil Wr WRXIP WM(c)
1(c) to p

S; p = nil Wr WR WM(c)
5; p!= nil Re lip I(c) to p
S; p =nil Re I

5 I(c) I If p=nilTA to c
_______________I___ I_____ I else 1(c) to p

Table 2: Main Local State Transitions. Part (a).
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State I Signal [ Next State Actions

PSR RMR(c,d) S Proc - data
cache - data
RMR(c-self, d)

PSR WMR(d) S cache = proper data
RMR(c-self,d)

PSW RMR(c,d) Proc = data
WMR(d)

PSW WMR(d) cache = proper data
WMR(proper data)

WRXIP IA WR nil
WRXIP WMR(d) WIIP cache = proper data
WRXIP RMF(c) PSRXIP PS = RMR(c)
WRXIP WMF(c) PSWXIP PS = WMR(c)
PSRXIP WMR(d) PSIUIP cache = proper data
PSWXIP WMR(d) PSWIIP cache = proper data
PSRIIP IA S RMR(c-self, d)
PSWIIP IA I WMR(d)

WIIP IA E
WIIP RMF(c) PSRIIP PS = RMR(c)
WIIP WMF(c) PSWWIIP PS = WMR(c)
RIIP IA RIP Re(c,d) to dir
RIP RA I
IIP IA I I_ I

Table 3: Main Local State Transitions. Part (b)

(i1 (b) (c)

ZRF .RM 3.AM

C1C r C2 CI C2- C3

Mesge.: ~. Unks:

Figure 4: Linking of caches due to read misses
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Figure 5: Invalidations due to write misses

shown in table 2. When 02 receives the reply, it sets its cache-pointer to point to C1 and
loads the line in state "shared-head". Thus a linked list is formed. Fig. 4(c) shows how C3
gets linked into the list. When cache C3 has a read miss, the request is forwarded to cache
C2 by the directory. The cache-pointer in the directory now points to 03.: When 02 receives
the forwarded signal it changes its state to "shared"' 2, and sends the reply to. 03. When 03
receives the reply, it sets its cache-pointer to point to C1 and loads the line in state "shared-
head". In the local state diagram shown in figure 3 we have shown states "shared-head"
(SH) and "shared" (5) as one state since they are quite similar and this simpLifies the figure.
C1 sends a reply to 02. The reply consists of the data and the address of 01.

Write misses cause a WM signal to be send to the directory. Write buffering along with
weak ordering (9] is used to allow the processor to proceed in the case of write misses. A
write is considered to be issued when a write-miss is sent by the cache. A write is considered
to be performed when a write-miss-reply is received by the cache. A fence (15] operation may
be used to ensure that all writes that have been issued are performed before the processor
is allowed to proceed. If a: copy of the line is not present in any other cache, the .directory
can directly send a rely. Otherwise the copies of the line have to be invalidated before a
reply can be sent. Figure 5 shows the sequence of events that result when multiple caches
have a copy of the line. The directory forwards the write miss signal 'WMF' to the old head
pointed to by cache-pointer and cache-pointer is updated to point to 04. When 03 receives
the write-miss-forward signal, it invalidates its copy and forwards the signal to 02. 02 does
the same and forwards the signal to Cl. Since the cache-pointer of 01 points to nil, it can
be determined locally that C1 is the tail of the list and a reply is sent to 04 after the data
in C1 is invaidated.

Sometimes, due to replacement of lines it may not be possible to determine locally that a
cache is at the tail of the list. The scenario under which this may happen will be explained
in further detail in section 4 on replacements. We present the solution to this problem here.

2The distinction between "shared-head" and "shared" needs to be done locally since only the head of the
t needs to send data to the main memory as discussed in section 4.
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Consider the case that a cache is the current tail of the list but has a non-nil cache pointer

(say C5) due to replacement of the line in C5. In this case a WMF signal is sent to C5.
The cache controller at C5 notes that it does not have a copy of the line and sends a WMR
to the requesting cache. Since C5 does not have a copy of the data, some means must be
used to send the data to 'he requesting cache. One method may be to have the old head
(C3) send the data along with the WMF signal. This would mean that a WMF has a cache
tine of data associated with it. This would result in performance degradation due to excess
network traffic and other factors. A better method, that we use, is to let the the old head
(C3) send a write-miss-reply-data signal to the requesting cache along with the data. When
the requesting cache receives this signal it stores the data and may service any read requests
that are associated with this line and are allowed to be serviced. A write-miss-forward-cache
signal traverses the distributed directory and the tail of the directory sends a write-miss-
reply-performed signal to the requesting cache. The requesting cache has to receive both,
the write-miss-reply-data and the invalidate-acknowledge signals to ensure that a write has
been "performed". To keep the state diagram simple, we use a counter t'o ensure that both,
the write-miss-reply-data and the write-miss-reply-performed signal are received. Thus there
are three differrent kind of signals for write miss replies.

1. The write-miss-reply signal carries the data and implicit information that the write
has been "performed". This is sent when the main m::nory directly sends the reply
to the requesting cache. It is also sent by a replying, ache if that cache is in state
"exclusive" when it received the write-miss-forward signal.

2. The write-miss-reply-data signal carries the data. An explicit write-miss-reply-performed
signal has to be received by the requesting cache before the write can be considered
to be "performed". This is used by the head of the shared list to send the data to the
requesting cache.

3. The write-miss-reply-performed signal is used to inform the requesting cache that all
the caches that have copies of the shared data have been invalidated. This is normally
sent by the tail of the shared list.

If the line in the cache is in state WR and a RMF or WMF signal is received, it is stored
locally. The address of the requesting cache is stored in the cache-pointer field of the cache
line and the state of the cache line is changed to note that a forwarded signal has been
stored. As shown in table 3, the state is changed to pending signal read 'PSR', or pending
signal write 'PSW' depending on the forwarded signal. These signals are serviced when the
reply to the local read or write miss is received.

When the data is in shared state in the cache, a write (Wr) by the processor produces
a write miss. In this case an invalidate is sent to the cache pointed to by the cache-pointer
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and a WM is sent to the appropriate directory. The local state is changed to "writing-

reading-X-in-progress" WRXIP. The state changes to exclusive' when both, an invalidate

acknowledge (IA) and a WMR are received as shown in table 3. If the write-miss-reply

is received before the invajidate-acknowledge signal, the intermediate state WIIP (writing-
invalidate-in-progress) is used. If the reverse happens, the intermediate state WR is used.
As we have seen, when the directory controller receives a write or read miss request, and
the data is present in some cache(s), the request is forwarded to the head of the list. No
locking is needed at the directory. The reply is sent by a cache directly to the requesting
cache. This prevents the directory from becoming a potential bottleneck and overcomes the
problems related with locking the directory mentioned in section 2.

4 Races and Replacement of lines

Line replacement can cause certain race conditions to arise [4, 16] in ditributed directory
protocols. In this section we will explain the mechanisms involved with line replacement and
races for the distributed directory protocol. On replacement of a cache line, data needs to
be transferred to the directory when the line in the cache is in state exclusive (E), or it is
the head of the shared list (SH). For caches that are part of a shared list, the lower portion
of the list is invalidated when a replacement is done. Caches -hat are part of a shared list,
but not at the head of the list, do not have to send data to ti.e directory on replacement.

If the state is exclusive, a replace signal 'Re(cd)' is sent to the directory. The state
changes to replace-in-progress (RIP). When the directory receives the replace signal, it copies
the data and sends a replace-acknowledge to the cache. When the cache receives the replace-
acknowledge signal, it changes the state of the line to invalid and can now use if for the
address that caused the replace to occur.

A race may happen during this replacement. A write-miss-forward (or read-miss-forward)
signal may be sent by the main memory at the same time as the replace signal is sent by the
cache to the main memory. In order to allow adaptive routing, we do not require that the
network preserve the order of messages. The forwarded signal may reach the cache when it
is in state replace-in-progress or after the cache has received a replace-acknowledge signal in
which case the cache no longer has a copy of the line. In either case, the cache bounces the
signal back to the directory as a write-miss-forward-bounce WMFB (or a read-miss-forward-

bounce) signal. The directory takes care of this race. When the main memory receives a
replace signal, it checks to see if the value of the cache-pointer is the same as the address
of the cache sending the replace. If it is, things are fine and the race did not occur. The
data is copied to the main memory, and the state is changed to absent. If the cache-pointer
has a different value, it means that a write-miss (or read-miss) was received by the directory
and this was forwarded to the cache that sent the replace signal. When this happens, the
data is copied to main memory and the state is changed to race. This is shown in figure 2
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and table 1. The forwarded signal comes back to the main-memory as a forward-bounced
signal and is serviced by the 'main memory. The state is changed from race to present when
the forwarded signal is received. Since the network need not preserve the order of messages,
the bounced signal may be received before the replace signal is received. If the line in main
memory is in state present when a bounced signal is received, it means that this race has
occurred. The signal is stored locally and the state is changed to race. The signal can be
stored in the memory line since the line does not have valid data. No extra storage is required
to store this signal. This stored signal is serviced when the replace signal is received and the
state is changed to present.

Now we consider the case when the cache is part of a shared list. There are two sub-cases.
The cache may be at the head of the list in state SH, or it may be within the shared list in
state S. We first consider the case when the cache is within the list. In this case, the data
does not need to be sent to the directory. If the cache is at the tail of the list (its cache
pointer is nil), the state can be changed to invalid and the line can be used immediately.
Otherwise, the cache sends an invalidate-forward signal to the next cache in the list and
changes its state to invalidate-in-progress IIP. The cache that receives an invalidate-forward
signal invalidates its copy and forwards the signal to the next cache. The tail of the linked
list sends an invalidate-acknowledge signal to the originating cache. When the invalidate-
acknowledge signal is received by the originating cache, it chknges its state to Invalid and
the line can now be used for a different address. It should be :,oted here that it is not always
possible to determine locally that a cache is the tail of the li-t. For example, when a cache
line that. is within the linked list is replaced, the cache that is towards the head does not know
that it is the new tail. To take care of this, when an invalidate-forward signal is received by
a cache that does not have a valid copy of the line, it sends an invalidate-acknowledgement
signal to the originating cache.

More than one cache that are part of the shared list may want to replace their copies
of the line at the same time. In this scenario, the caches that want to replace their lines
send invalidate-forward messages to the next cache. An invalidate-forward message origi-
natnug from a cache (Cl) may be received by a cache (C2) while it is in state invalidate-in-
progress. In this case, the invalidate-forward signal is stored locally at C2 and an invalidate-
acknowledgement is sent to C1 when C2 receives an invalidate-acknowledgement for its own
replacement.

Now we consider the case when the cache is the head of the shared list, i.e. its state
is SH. In this case the data needs to be sent to the main memory on replacement. First,
an invalidate-forward signal as sent to the next cache and the state is changed to replace-
invalidate-in-progress. When the invalidate- acknowledgement is received, the state is changed
to replace-in-progress and a replace signal is sent to the directory along with the data.
The main memory follows the same procedure as described previously and sends a replace-
acknowledge signal to the cache. The cache can then change the state of the line to invalid
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and u'e it for the address that caused the replace to occur.

Certain optimizations to this basic scheme are possible. For example, a fully associative

replacement buffer may be used to buffer the lines that are in the process of being replaced.

This would minimize the effect of replacement of lines. The size of this buffer is expected to

be small.

5 Network Issues and Deadlocks

Any interconnection network may be used to connect the nodes to each other. Thus the
network may any combination of a multistage interconnection network, a torus, a mesh etc.
using store and forward routing, virtual cut-through routing, wormhole routing, adaptive
routing etc. However, it should be ensured that the routing algorithm that is used is deadlock
free. A number of deadlock free algorithms for various networks have been proposed in the
literature [8, 12, 10).

UsualJy, to prove that a network is deadlock free, it is assumed that a message arriving
at its destination node is eventually consumed. In directory based protocol this assumption
is not necessarily true since when a message is received, another one may have to be sent
before the message may be considered to be "nsumed.

In the distributed directory protocol we have to take care of the following kinds of dead-
locks.

1. Request-reply deadlock: When a miss request is received by a directory, a reply has
to be sent (assuming the line is absent from all other caches) to the requesting cache
before the request can be considered to be consumed. This can produce a request-reply
deadlock.

2. Request-request deadlock: When a miss request is received by a directory, a request
may need to be forwarded (assuming the line is present in another cache) to another
node before the request can be considered to be consumed. This can produce a request-
request deadlock.

3. Reply-reply deadlock: When a reply is received by a cache, it is possible that a reply
needs to be sent (assuming that there is a pending signal for the line) to another node
before the reply can be considered to be consumed. This can produce a reply-reply
deadlock.

To take care of these deadlocks, we use three logical networks along with time-outs. A
request network is for the requests, a reply-network is used to send all the replies and an
exception-network is used to send the exception retry signals on time-outs.

4-516



6 CORRECTNESS OF THE PROTOCOL

Request-reply deadlocks are taken care of by having different request and reply networks.

The exception-network allows us to take care of request-request and reply-reply deadlocks.

Let us consider a request-request deadlock to explain the mechanism for time-outs. When

a miss request is received by the directory, it needs to be forwarded to the head of the list

if the line is present in any cache. Thus the request cannot be consumed before another
request is sent out. This may generate cycles in the network resulting in deadlock. A time-
out mechanism is used to handle such cases. On a time-out, an exception is sent to the
originating cache (say Cl) along with a modification of the original request. The directory
follows the same protocol as it would if the request could have been successfully forwarded
i.e. it changes its cache-pointer to point to C1 and changes the global state if required. The
original request is modified to include the address of the cache (say C2) that the request
would have been forwarded to. When Cl receives the exception signal, it now directly sends
the request to C2.

6 Correctness of the Protocol

The correctness of cache coherence protocols is a very important issue. As cache coherence
protocols become more complex, it becomes increasingly impor, Ifnt to analyze the correctness
of the protocol. We plan to validate the correctness of our prutocol by building simulation
models of the protocol and by using suitable test programs to Irive the simulation models.

7 Efficient Implementation of Synchronization Vari-
ables

In shared memory architectures it is very important to handle locks and barriers efficiently.
The distributed cache coherence scheme can be used to implement a very efficient scheme of
locks at minimal extra cost. The implementation of locks allows us to provide an efficient
software solution of barriers.

7.1 Distributed Locks

Most architectures have some form of atomic test&set instruction to implement spin locks [2].
The test&set instruction sets the %alue of a memory location and atomically returns the old
%alue. When a process wants access to a lock, the processor performs the test&set instruction.
If the operation is successful, the processor continues. Otherwise the processor repeatedly
tries to access the lock until it is successful. This mechanism is known as spin lock or busy
wait. Spinning on a test&set instruction can cause a lot of network traffic. The network
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procedure lock(var)
begin

Queue-Lock(var)
while (Test&Set (var))

Queue-Lock(var)

end

Figure 6: Lock procedure

traffic due to busy wait is O(N2 ) where N equals the number of processors that are busy-
waiting. This can be confirmed by noting that each time a lock is released, only one processor
is successful in getting the lock, but each processor performs the test&set operation. Such
implementations of locks can result in starvation and the accessing of locks is not fair.

The distributed cache coherence protocol allows an implementation of locks that makes
the network traffic minimal. Lock requests are queued and normally serviced in FIFO order3

The network traffic is O(N). Fine grain locking is provided by having a lock bit per cache-
line [5]. The main advantage of providing a lock bit per cache line is that the data associated
with the lock is obtained at the same time as the lock.

Figure 6 shows the code for a lock procedure. The queue-lock instruction is used to join
a queue of nodes waiting for a lock. A cache line with the lock bit set is allocated on a
queue-lock (QL) instruction. The test&set instruction returns a value of 'true' until the lock
is obtained at the local cache.

The queue of locks is formed in a similar way as the linked list for caches that have
shared copies of a line are formed. The implementation of locks requires a few extra states
and locks. Figure 7 shows the global state diagram for lines using lock bits. Such lines are
called hard atoms (5]. Table 4 shows the corresponding transition table. Figure 8 shows the
local state diagram for hard atoms and table 5 shows the corresponding transition table.

When a queue-lock instruction is executed, a line in state lock-in-progress 'LIP' is allo-
cated and a lock-miss 'LM' signal is sent to the directory. If no other cache has locked the
line, the directory sends a lock granted 'LG' signal along with the data. The first cache that
receives the lock-granted signal from the directory is considered as the upstream end. Oth-
erwise the directory updates its cache-pointer to point to the requesting cache and forwards
the lock-miss signal to the cache pointed to by cache-pointer previously. The cache that
receives this forwarded signal, stores the address of the requesting cache (the downstream
pointer) in its cache-pointer field. A set-upstream-pointer 'SUP' signal with the old value of

3The FIFO order may not be exactly preserved in the unlikely case that the cache line associated with
the lock has to be replaced.
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Figure 7: Global states for hard atoms (locks)

[State [ Signal [ ext st Actions ------
A LM(c) L p=c- LMR(D,d) to c
L LM(c) L Old-p=p. p=c

LMF(c) to Old-p
SBP(Old-p) to c

L R(cd); c=p A memfdata
L R(c,d); c!=p L LG-Next(c,d) to p
L RL(c.d) HR mem=data

UA to c
L RM(c) HR mem=WMRL(c)
L WM(c) HR mem=WMRL(c)
L release-lock(c,d) L release-lock(d) to p

11H LM(c) HR Old-p=p; p=c
I.MF(c) to Old-p
SBP(OId-p) to c

HR RM(c) or WM(c) L WMRL(d) to c
HR RL(c,d) L signal=nem

mem=data
service signal

Table 4: Main global state transitions for hard atoms.
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I Stat.] Signal Next State Actions
I QL(c) LIP LM(c)
I TkS I return 1 to proc

LIP LG(Dd) or release-lock(c,d) LH cache = data
LIP SUP(c) UP up = c
LIP LG(c,d) or release-lock(c.d) LG cache = data
LIP LMF(c) LIP PS = LG(c); set DPP
LH Test&Set L Proc = 0
LH LMF(c) LH PS = LG(c); set DPP
LH Rc A2 Re(c,d) to dir
UP LG(c,d) or release-lock(c,d) LH cache = data
UP LMF(c) UP PS = LG(c); set DPP
UP Rc Al UUP (c,bp) to dir

UDP(c.nil) to BP
LG SUP(c) LH nil
LG LMF(c) LG PS = LG(c); set DPP
L Unlock; DPP not set LHU nil
L Unlock; DPP set I LG(c.d)
L LMF L PS = LG(c); set DPP
L Rc A2 RL(cd) to dir
L TkS L return I to proc

LHU Test&Set L Proc = 0
LHU LMF(c) I LG(c,d)
LHU Rc A2 R(cd) to dir
LF Unlock I LG(cd)
LF Rc A2 RL(c,d) to dir
Al UA or LMF(c) A2 nil
A2 UA or LMr(c) I nil
WR WMRL LFX
LFX Unlock I release-lock to dir

X release-lock(e,d);c != up X release-lock to up

Table 5: Local state transitions for hard atoms.
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U

L

LN

ua p

Figure 8: Local states for hard atoms

the cache-pointer is also sent to the requesting cache. The last requesting cache is considered
as the downstream end. The directory points to the downstream end. The requesting cache
stores this upstream pointer in its data field. In this way, a doubly linked list of caches wait-
ing for a lock is formed. Lines that are in state "lock-in-progress" do not have valid data, so
these lines can store the upstream pointers for the doubly linked list without requiring extra
memory storage. The "lock-in-progress" state has a few sister states that are used to ensure
that the signals required to form the doubly linked list are received. If the lock-granted signal
is received first, the sister state LG is used. If the SUP signal is received first, the sister
state UP is used. When both these signals are received, the state becomes lock-held LH'
and the lock bit is unset. Now a Test&Set instruction can be completed successfully. .tore
than one processor may share a cache and there may be more than one process contending
for the same lock. When a lock-granted signal is received, a process has to obtain the lock
and release it to allow other caches waiting for the lock to get the lock. If no other cache
wants the lock, the line is held locally. Locking and unlocking of the line by processes that
share the cache can now be done in the cache very efficiently without requiring any network
traffic. After the lock has been used once locally and a lock-miss-forward signal is received,
the lock is granted to the next cache in the queue. The grant signal does not have to go
through the directory and the data is passed between the caches.

Unlocking of locked lines by processes other than the one that performed the lock is
allowed. A unlock signal is sent to the directory which forward the signal to the tail of the
queue of caches. The signal flows upstream until it reaches the head node with the locked

4-521



7 EFFICIENT IMPLEMENTATION OF SYNCHRONIZATION VARIABLES

line.
Modulo replacement, lock requests are serviced in FIFO order and starvation is eliminated

if there is one process per cache. This solution only requires O(N) operations. A somewhat
similar scheme has been proposed by Goodman et.al. [11], however their implementation
requires the interconnect to support global broadcasts and the transfer of the lock and data
to the next cache in the queue requires interactions with the main memory, resulting in more
network traffic.

Replacement of lines in caches that are queued for the lock is allowed by sending signals to
the upstream and downstream caches to update their links and waiting for acknowledgements
before the line is replaced. To avoid deadlocks, signals from the upstream side are given
higher priority. The replacements is thus non destructive. The process associated with
the line that got replaced -ssues a queue-lock instruction at a later time to join the queue
again. If the line associated with the queue-lock instruction is not absent from the cache,
the instruction does not cause any actions. Replacement of locked lines is done similarly by
updating the backward link of the next cache to point to the directory. The data is copied
to the main memory and the global state becomes HR implying that a held lock has been
replaced. The process that held the lock is free to migrate. A subsequent read or write miss
by the process causes the line to be loaded in locked state in the cache. When a locked line is
replaced, the forward pointer is lost. In such cases, when the 'ock is released, a release-lock
signal is sent to the directory which in turn forwards it to the cache pointed at by cache-
pointer. The signal flows upstream until it reaches a'cache whose back pointer points to the
directory. The FIFO order of granting locks is then resumed. Processes that have issued the
queue-lock instruction, but not yet obtained the lock successfully are allowed to migrate by
making the operating system replace the lines in state lock-in-progress associated with the
process that has to be migrated. This is done by maintaining a data structure that contains
the address of lock lines requested by the process, but not locked by that process.

7.2 Barriers

Barriers are an important form of synchronization in shared memory multiprocessors. Ex-
ecution of a thread of control cannot proceed beyond a barrier until a specified number of
threads have reached the barrier. Mlost architectures would implement a barrier as follows.
A shared variable nur-barrier is initialized to the number of threads that must wait at
a barrier. There is also a lock associated with the num-barrier. When a thread reaches
a barrier, it performs a lock, decrements the num-barrier and performs an unlock. If the
value of num-barrier is zero, it sets a barrier..Ilag to true. The thread then spins on a
barrier..flag in its local cache until the value of barrier.flag becomes true, at which point
the thread can proceed. The Sequent Balance 21000 software provides a similar solution.
This algorithm takes fQ(N) time units to execute. For large N, the critical section would
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become a bottleneck.
The implementation of locks described above allows for a very efficient implementation

of barriers in software. Our algorithm is based on "the tournament algorithm"' proposed
in (131 and [14]. The code for the barrier procedure is shown below. The algorithm uses a
binary tree to synchronize the processes.

*define NUM-.LOCKS 10 /* NUMLOCKS =number-of-processes -1*

mutex Lock-.Array ENUM-LOCKS);
int flag CNUH..LOCKS);
int turn [NUM..PROCS);

InitO0
for~izO; i<NUMhPROC; i++){

Lock-.Array Ei) i
turn Ei)=o;

for(iO; i<NU?.LLOCKS ;i++) {
flag~i]=O;

Barrier (process-.id)
index - process.id; /* from -6 to 0 for example *
turn Eindex] = 1 - turn Eindex]
while(index < NUM-.LOCKS){

index = next~index];
lock £Lock-.Array Eindexll;
Lock-.Array Eindex) ++;
if (Lock-.Array~index) == index){

un'lock ELock-.Array Eindex);
while (flag~index) != turn~index));
left-.child-.index left..child~index);
right-.child-.index =right..child~index);
flag~left..child-index) I - flagleft.child-.index];
flag~right-.child-index] I - flagright-.child-.index];

else{
unlock ELock..Array Eindexj);
index--;
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4

4 .4 - .2 .1 0

Figure 9: Static tree used for barrier synchronization

i -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
nexti 1 1 2 2 3 3 5 4 4 1 6 6

Tabie 6: Table representing the topology of the static tree

}

flag[index] = I - flag[index];

The basic idea of the algorithm is simple. A static binary tree of is used to synchronize
pairs (buddies) of processes. The structure of the tree for a seven process barrier is shown
in figure 9. Table 6 shows the table for the arrays used in the algorithm. At each level,
the buddy that executes the lock successfully first, waits at that level. The buddy process
that obtains the lock next goes to the next level in the tree. When two buddies reach the
root of the tree, it implies that all processes have reached the barrier. This information
is passed down the tree to the buddies that executed the lock first. The network traffic
generated by our algorithm is O(log(N)). Due to the efficient implementation of locks
provided by the distributed directory cache coherence protocol, the software solution for
barrier synchronization would produce minimal network traffic.

8 Conclusions and Future Work

We have presented a new protocol for providing cache coherence in large scale shared memory
machines. The protocol provides efficient means to implement locks at minimal cost. 'he
scalability and cost benefits of the protocol makes it appear to be a possible solution for
the cache coherence problem in large scale shared memory multiprocessors. An analytic or
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simulation analysis of the protocol needs to be done to determine the performance. We will
report the results of our performance analysis in a futu'e paper.
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Abstract

This paper describes a new hardware solution and protocol for the cache coherence problem
in large scale shared memory multiprocessors. The protocol is based on a linked list of caches
and (to ensure a scalable design) does not require a global broadcast mechanism. Fully-mapped
directory-based solutions proposed earlier also do not require a global broadcast mechanism.
However, our solution has lower cost and potentially better performance than the fully-mapped
directory-based protocol for high performance systems. Further, we do not assume that the
network preserves the order of messages. Thus we do not preclude adaptive routing. Our
solution also allows an efficient implementation of locks.

Key Words: Parallel systems, shared memory, cache coherence protocols.

1 Introduction

Cache coherence is an important well known problem in shared memory multiprocessor systems.
If multiple caches are allowed to simultaneously have copies of a given memory location, a mech-
anism must exist to ensure that all copies remain consistent when the contents of that memory
location are modified. Cache coherence protocols are well understood for bus-based shared mem-
ory architectures[3]. These protocols are also called snoopy cache coherence protocols. The term
'snoopy' is derived from the fact that each cache must watch all traffic on the bus and take ap-
propriate action for addresses that are present in the cache. Addresses are, in effect, transmitted
to each cache by global broadcast. The shared bus limits the number of processors to the number
that can be connected to the bus without saturating it. To support scalable shared memory archi-
tectures, the cache coherence protocol needs to be able to work in the absence of a global broadcast
mechanism. Centralized directory based schemes[1,7] are a possible solution in this environment.
We present some drawbacks of these schemes in section 2.

Based on a linked list of caches[6], this paper describes a new distributed directory cache
coherence protocol. The information about caches which have copies of the data is decentralized

*This work was supported by equipment provided by the Knowledge Systems Laboratory (KSL), Department of
Computer Science, Stanford University.
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and distributed among the cache lines. Our implementation, like the fully mapped centralized

directory scheme[7], tracks any number of cache copies and never requires invalidates to be sent to

all caches in the system. It has a lower cost and better performance than the fully mapped directory

based coherence scheme for expected memory and cache sizes in high performance systems. In the

fully mapped scheme, the size of the memory required to hold the state information is O(MN),

where M is the size of main memory and N is the number of caches. In our scheme, on the other
hand, the size of the memory required to hold the state information is only O(M log N). We allow
adaptive routing (so that network performance may be more robust) and thus do not assume that
the interconnection network preserves the order of messages. The network traffic generated for
invalidations is reduced by a factor of two in our implementation compared to a fully mapped
directory scheme for networks that do not preserve the order of messages. An important feature of
this protocol is that locks can be supported very efficiently with minimal extra cost.

This paper is organized as follows. Section 2 describes the directory based protocols and provides
the necessary background for the rest of the paper. Section 3 describes the distributed directory
protocol along with i simple performance analysis. Section 4 describes the implementation of locks.
Section 5 states our conclusions and future work.

2 What's Wrong With Centralized Directory Entries?

In the fully mapped centralized directory scheme [7], the director% has N valid (or 'present') bits
per line, where N is the number of caches. The amount of storage needed for the directory in the

fully mapped scheme is thus O(MN), where M is the size of main memory. If a cache has a copy
of the line, the present bit corresponding to that cache is set. The directory also has a dirty bit. If
the dirty bit is set, only one of the caches can have a copy of the line.

On a read miss, the directory is checked to see if the block is dirty in another cache. If so,
consistency is maintained by copying the dirty block back to the memory before supplying the
data. To ensure correct operation, the memory line has to be 'locked' by the directory controller
until the write-back signal is received from the cache with the dirty block. No other coherency
related operations on this line may be undertaken while a line is locked. If the line is not dirty
in another cache, then data is supplied from the main memory and the corresponding present bit
is set in the directory. On a write miss, the central directory is checked to determine the state of
the line. If the line is dirty in another cache, then the line is first flushed from the cache before

supplying the data. The memory line is locked while this is being done. If the line is clean in other
caches, invalidate signals are sent to the caches. The memory line is locked until acknowledgements
are received from the caches. The data can then be supplied to the requesting cache. Care has to
be taken to handle race conditions properly. These race conditions and their handling are discussed

in (4,14].
The locking of lines by the directory controller impacts the performance and design complexity

of the cache coherence scheme. Requests that arrive while a line is locked have o be either buffered
at the directory, or else bounced back to the source to be reissued at a later time. If the requests are

buffered at the directory, the network traffic is lower. However, if the buffer overflows, the requests
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still have to be bounced back. This complicates the design of the protocol (and the directory
controller that implements it). If the directory controller is multithreaded, requests for, a line

that is not locked can be serviced immediately. However, implementing a multithreaded directory
controller may be impractical due to its complicated design [14]. If the directory controller is

not multithreaded, requests for no line can be serviced until the current request for that memory
module is serviced. Locking the whole memory module while servicing a request for any line that
requires a coherency related transaction could make the directory a potential bottleneck.

To reduce the amount of storage required, a number of modifications to the above scheme may
be made. However, these modifications either require the implementation of an efficient broadcast
mechanism (contradicting our assumption about scalable systems), or may generate excess network
traffic along with performance penalties. For example, one simple modification is to have i pointers
per line in the directory. Each pointer may point to a cachothat has a copy-of the line. If more that
i caches have copies of the line, a broadcast has to be done to all caches to service a write miss.
The memory line has to be locked until all caches acknowledge the invalidation. This is classified
as a DiriB scheme in (1], where i is the number of indices kept in the directory and B stands for
broadcast. A DiriNB scheme, where i is less than the number of caches and NB stands for no
broadcast, is possible also. In such a scheme, at most i caches can have copies of a line at the same
time. In the case where a read miss occurs when i caches have copies of the line, the directory has
to invalidate one of the copies before the data can be supplied to the requesting cache. This might
result in "thrashing" the line between caches.

3 How Would Distributed Directory Entries Be Better?

We will assume a very general computing system structure in our discussions. Figure 1 describes
this basic architecture. Each node consists of one or more processing elements (P), a cache (C),
a network controller (NC) and part of the distributed global memory (DGM). The DGM includes
the directory. For the distributed directory protocol we do not assume that the network preserves
the order of messages. This allows adaptive routing (making network performance more robust).
We are not aware of directory based protocols described in the literature that allow out of order
message arrival.

3.1 The Cost is Lower

In our distributed directory protocol, caches that share data are linked together in a list. We first
present the general outline of the protocol here and explain it in further detail in section 3.2. Each
line in the main memory and the cache has a cache-pointer field associated with it. This pointer can
address any cache in the system. The directory services a read or write miss request by changing
the cache-pointer in the directory entry associated with the line to point to the requesting cache.
If the old value of the cache-pointer is nil, a reply is sent directly to the requesting cache. If the
old value of the cache-pointer points to a cache, the request is forwarded to that cache. In case of
read misses, that cache replies to the requesting cache, and the distributed list now includes the
requesting cache. In case of write misses, the distributed list has to be invalidated before a reply
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Figure 1: The basic architecture

can be sent to the requesting cache. A read miss :eply consists of the data and address of the cache
or memory module replying to the request. A write miss reply consists of the data.

The amount of memory required for the pointer is log N where N is the number of caches. The
total amount of memory needed is thus O(M log N + Nc log N) where M is the total size of main
memory, N is the number of caches and c is the size of each cache. The above expression can be
written as O(M log N(1 + k)) where k is Nc/Nm (m being the amount of memory per node). We
interpret k as the ratio of the size of cache memory per node to the size of main memory per node.

Assuming a constant value of k for the machine, the amount of memory required for the dis-
tributed directory scheme is O(M log N). We can expect then, that the cost of implementing the
distributed directory scheme is significantly less than the fully mapped scheme-which requires
O(MN) amount of memory.

3.2 The Distributed Directory Controller Need Not Be Multithreaded

In the distributed directory protocol, the directory controller is not multithreaded. The servicing of
requests does not require any locking of lines as in the case of the centralized directory protocol. In
case of cache misses, the cache controller issues requests to the appropriate memory module. A reply
is subsequently received, either from the main memory, or from another cache. The communication
between the caches and the main memory may be considered to be similar to asynchronous message
passing. The cache controller sends a miss signal to the main memory on read and write misses.
Before a miss signal is issued by a cache controller, a line associated with the address is allocated
in the cache memory. All signals specify the address of the source of the request and the address
of the lines they are associated with.

A line in main memory is originally in state 'absent' from all caches. Each request causes the
value of the cache-pointer to be updated to point to the requesting cache. If the line is absent from
all the caches, the main memory sends a reply. Otherwise the request is forwarded to the last cache
to make a request for the same line.

4-531



) (b)

1. RM 2M .M .R 2AR.UP

3.NMR 3.RMR

Messag: U.Lnks: ...

Figure 2: Linking of caches due to read -misses

A line in cache memory is originally in state 'invalid'. A read or a write request from thie
processor causes the state to change to 'writing-or-reading' and a read-miss or write-miss signal to
be sent to the appropriate main memory module. On a read-miss-reply, the value of the. cache-
pointer is set to be the address of the object sending-the reply. This causes a linked-list of caches
that contain the data in shared state to be formed. Figure 2 illustrates the process followed to
set up the linked list. Consider the case where cache C1 has a read miss for a line followed by
caches C2 and C3. As show in fig. 2(a), cache C1 sends a read-miss signal to the directory. The
cache-pointer of the line in the directory is made to point to C1. Since no other cache has a copy
of the line, the main memory sends a read-miss-reply to Cl. When C1 receives the reply the line
is loaded into the cache in state 'shared'. Now, when cache C2 sends a read-miss to the directory,
a read-miss-forward signal is sent to C1 as shown in fig. 2(b). The directory does not send a reply
directly to C2 since C1 may have written to the line locally. The cache-pointer in the directory now
points to C2. When C1 receives the forwarded signal, it sends a reply to C2. The reply includes
the data and the address of C1. When C2 receives the reply, it sets its cache-pointer to point to
C1. Thus a linked list is formed. Fig. 2(c) shows how C3 gets linked into the list.

Write misses cause a write-miss signal to be sent to the directory. As mentioned earlier,.a line
is allocated in the cache before the miss signal is sent. This line is used to buffer the write. Write
buffering[8,131 allows the processor to proceed immediately without stalling. A write is considered
to be issued when a write-miss is sent by the cache. A write is considered to be performed when
a write-miss-reply is received by the cache. A fence [12] operation may be used to ensure that
all writes that have been issued by a processor are performed before that processor is allowed to
proceed. If a copy of the line is not present in any other cache, the main memory directly sends a
reply. Otherwise the copies of the line have to be invalidated before a reply can be sent. Figure 3
shows the sequence of events that result when multiple caches have a copy of the line and C4 has a
cache miss. The directory forwards the write miss signal to the old head pointed to by the cache-
pointer and the cache-pointer is updated to point to C4. When C3 receives the write-miss-forward
signal, it invalidates its copy and forwards the signal to C2. C2 does the same and forwards the
signal to C1. Since the cache-pointer of C1 points to the directory, it can be determined locally
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Figure 3: Invalidations due to write misses

that C1 is the tail of the list and a reply is sent to C4 after the data in C1 is invalidated.
If the line in the cache is in state 'writing-or-reading' and a read-miss-forward or a write-miss-

forward signal is received, the forwarded signal is stored in the cache-pointer field of the tache line.
The state is changed to note that a forwarded signal has been stored. Such signals are serviced
when the-reply to the local read or write miss is received. If multiple transactions for the same line
are pending, the caches form a distributed queue of them. Details of the protocol may be found in
[15].

As we have seen, when the directory controller receives a write or read miss request,,and the data
is present in some cache(s), the request is forwarded to the head of the list. Neither the memory
line nor the memory module needs to be locked. The directory controller is single threaded and
we do not have the problem of buffering the signals and bouncing them to the sources as did the
centralized directory protocols mentioned in section 2. No locking occurs during coherence related
transactions and replies to requests are sent by caches, directly to the requesting cache. This helps
to prevent the directory from becoming a potential bottleneck.

3.3 The Protocol Has Good Performance

In this section we shall present some qualitative discussion and simple quantitative analysis to show
that besides saving in cost, the distributed directory protocol has good performance. As mentioned
in section 2, modified versions of the fully mapped centralized directory protocol may be used to
provide a saving in cost. In the Dir,B protocol, memory space for i pointers per memory line has
to be provided for the directory. When the number of readers exceeds i, a broadcast has to be
done to invalidate the copies on a write miss. Applications that have more than i readers between
successive writes would show poor performance on such a system since broadcasts would have to
be done frequently. In a Dir,NB protocol, such applications would result in 'thrashing' between
caches. The distributed directory protocol does not have any of these problems. As the number of
readers between writes increases, the length of the linked list of r(aders increases and though there
is some degradation in the performance, it is more graceful. We shall now compare the performance
with the fully mapped centralized directory protocol.

Use of write-buffering, the performance of point-to-point signal transmission schemes and access
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times for static cache memory (SRAM) and dynamic main memory (DRAM) are critical issues in
contrasting centralized and distributed directory protocols. We shall first state the assumptions
we make to compare the distributed directory protocol with -the centralized directory -protocol and

then use a simple, commonly occurring problem, involving communication of each process with a

given number of other processes, to db an approximate analysis. In our analysis we also show how
some variations in our assumptions-wuld affect relative performance.

Currently the ratio of access times for static cache memory (SRAM) and dynamic main memory
(DRAM) for high performance SRAds and DRAMs is around 1:10 [9,101. Using surface mount
packaging, we estimate point to point transmission times in the network to be equal to the cycle
time of the SRAM. We also assume that the directory is implemented in SRAM. In a 256 node
machine, the average distance that a message has to travel requires approximately 10 cycles. This
we take as the time for a "network operation".

In the centralized directory scheme, a read miss would require 2 network operations (to the main
memory and back) and a DRAM access (for the main memory) if the line is not dirty in another
cache. For a SRAM to DRAM access time ratio of 1:10, this would imply a total latency of about
32 cycles (20 for the network operations, 10 for the DRAM access and 2 for the SRAM access).
If the line is dirty in another cache, 2 extra network operations would be required to get the.data
from that cache. This would imply a total latency of about 52 cycles. In the distributed directory
scheme, if the data is present in another cache, no DRAM accesses are required since the data is
obtained from SRAM cache. A total of 3 network operations are required. This implies a latency of
about 32 cycles (whether the line is dirty or not). Due to the point to point network performance,
direct cache to cache transfers, and faster access times for SRAM memory, read misses woald result
in less (or comparable) latency in the distributed directory scheme.

The latency of write misses may be a possible cause of concern since the invalidations of the
caches linked in the list have to be done sequentially. However, if the writes to a line occur frequently,
the number of caches that have to be invalidated between writes wiJi be-small. Thus the cases when
the latency is large will be infrequent. Measurements on a range of applications[16] supports the
assertion that the number'of caches thdt have to be invalidated on writes is (on average) small.

Additionally, we use write buffering to reduce the effect of sequential invalidation operations.
Write buffering is frequently used in uniprocessor systems to prevent the processor from stalling
on a write miss. The writes to memory are buffered in the cache and the processor is allowed to
proceed. In multiprocessor systems, write buffering has to be done with care to avoid unexpected
consistency violations. The problem of write buffering in multiprocessors has been studied in
considerable detail(8,13]. In the distributed directory protocol a write is performed when the write-
miss-reply is received by the requesting cache. Before exiting a critical section, a fence is executed
to ensure that all writes are performed.

We now consider an analysis of the distributed directory protocol in the context of an algorithm.
Many algorithms require communication with a fixed number of processes that are operating on
data elements. In such algorithms a process associated with an element usually reads the values
of the logical neighbors of the element, computes a value and then issues a write instruction. We
call the number of logical neighboring elements that read the updated value to be the fan-out of
the process. The fan-out may be considered to be the number of readers between successive writes
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Figure 4: Effect of write buffering (fan-out = 4; SRAM/DRAM = 1:10;
network operation = 10 cycles)

to a variable. Consider the sequence of reads and a write to constitute a block. In- the case where
there is more than one element per process, it may be possible to operate on several blocks and
so buffer the writes of several blocks before having to perform a fence operation. Figure 4 shows
the relative execution time versus the number of elements per process (the number of blocks) that
can be operated upon before a fence operation is required. The execution time was calculated
by analyzing the number of network operations required for each scheme and adding up the time
needed to do these operations. The base case is shown by a '*'.

For figure 4 we have assumed a fan-out of 4, the SRAM to DRAM access time ratio to be
1:10 and the number of cycles required fot a network operation to be 10. Write buffering improves
the performance of both the centralized and the distributed directory protocols. However, the
improvement in performance for the distributed directory protocol is more than the improvement
in performance for the centralized directory protocol.

Figure 5 shows the effect on performance with a change of SRAM to DRAM access time ratio.
In this figure we have assumed write buffering for all cases. In the distributed directory protocol, the
data is transferred between caches most of the time. Therefore, the performance of the distributed
directory protocol would not vary much with a change in DRAM access time. A lower DRAM
access time favors the centralized directory protocol. The distributed directory protocol allows the
use of cheaper, slower, and larger DRAM memory without causing a noticeable loss in performance.

Figure 6 shows the effect of changing the number of cycles required for a network operation. A
lower number of cycles for a network operation favors the distributed directory protocol more than
the centralized directory protocol.

Figure 7 shows the effect of varying the fan-out of the algorithm. A larger fan-out implies that
more caches have to be invalidated on a write. For example, with a fan-out of 16, 16 caches have
to be invalidated on each write. The use of write buffering and the lower latency for rea.ds helps
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to reduce the effect of sequential invalidations in the distributed directory protocol. It should be
noted here that our analysis does not consider network or resource contention. In the centralized
directory scheme, there would be more contention for the resources when the fan-out increases.
This should worsen the performance curves for the centralized directory scheme. The distributed
directory protocol should perform better when the fan-out is less than 4 and have comparable
performance when the fan-out is larger.

A more accurate analysis would need detailed simulations. We are in the process of constructing
a simulation model of the protocol. However,, our simple analysis shows that besides savings in
cost (as discussed in section 3), the distributed directory protocol can provide good performance
as well.

4 Efficient Implementation of Synchronization Variables

In shared memory architectures it is very important to handle locks and barriers efficiently. The
distributed cache coherence scheme can be used to implement a very efficient scheme of locks at
minimal extra cost.

Familiar microprocessor architectures have some form of atomic test&set inrstruction to imple-
ment spin locks[2]. The test&set instruction sets the value of a memory location and atomically
returns the old value. When a protess wants access to a lock, the processor performs the test&set
instruction and if the operation is successful, the processor continues. Otherwise the processor
repeatedly tries to access the lock until it is successful. Spinning on a test&set instruction can
cause a lot of network traffic each time a lock is released. A better alternative is a test&test&set
instruction, where the first test is done in the cache, and the test&set done only if the first test
is successful. This will reduce the network traffic, but even if this is done, the network traffic due
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to lock acquisition is O(N 2) where N equals the number of processors that are contending for the

lock1 . Further, such implementations of locks can result in starvation because the accessing of locks

is not fair (perhaps due to differences in the network distance between a lock and its contenders).

The distributed cache coherence protocol allows an implementation of locks that makes the

network traffic minimal. Lock requests are queued and normally serviced in FIFO order. The
network traffic is only O(N).

Fine grain locking is provided by having a lock bit per line[5]. The main advantage of providing
a lock bit per line is that the data can be obtained at the same time as the lock. The code for a
lock procedure is shown below.

procedure lock(var)
begin

Queue-Lock(vat)
while (TestkSet(var))

Queue-Lock(var)
end

The queue-lock instruction is used to join a queue of noes waiting for a lock. A cache line with
the lock bit set is allocated on a queue-lock instruction. A queue-lock instruction may be issued
more than once. If the associated line has already been allocated in the cache, the instruction
is redundant and has no effect. The test&set instruction returns a value of '1' until the lock is
obtained at the local cache.

The queue of locks is formed in a similar way as the linked list for caches that have shared
copies of a line. The implementation of locks requires a few extra states and signals. When a
queue-lock instruction is executed, a line in the state 'lock-in-progress' is allocated and a lock-miss
signal is sent to the directory. If no other cache has locked the line, the directory sends a lock-
granted signal along with the data 2. Otherwise, the directory updates its cache-pointer to point
to the requesting cache and forwards the lock-miss signal to the cache previously pointed to by
cache-pointer. The cache that receives this forwarded signal, stores the address of the requesting
cache (the downstream pointer) in its cache-pointer field. A set-upstream-pointer signal with the
old value of the cache-pointer is also sent to the requesting cache3 . The requesting cache stores this
upstream pointer in its data field. In this way, a doubly linked list of caches waiting for a lock is
formed. Lines that are in state 'h6ck-in-progress' do not have valid data, so these lines can store the
pointers for the doubly linked list without requiring extra memory storage. The 'lock-in-progress'
state has a few sister states that are used to ensure that the signals required to form the doubly
linked list are received.

More than one processor may share a cache and thdre may be more than one process per
processor contending for the same lock. When there are multiple processes per processor contending
for the same lock, the lock procedure is executed by each process. The first queue-lock request to
reach the cache causes a line in the cache to be linked into the doubly linked list of caches waiting

'To check this, note that each time a lock is released, all contenders for the lock try to access it.
2The first cache that receives the lock-granted signal from the directory is considered as the upstream end.
3The last requesting cache is considered as the downstream end. The directory points to the downstream end.
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for a lock. The processes associated with a cache contend for the lock by checking the cache locally,
without generating any network traffic. When a lock-granted signal is received, a process has to
obtain the lock and release it to allow other caches waiting for the lock to get the lock. If no other
cache wants the lock, the line is held locally. Locking and unlocking of the line by processes that
share the cache can now be done in the cache very efficiently without requiring any network traffic.
After the lock has been used and released once locally, and if a lock-miss-forward signal is received,
the lock is granted to the next downstream cache in the queue. This ensures fairness between
processors. In our distributed directory scheme, the grant signal does not have to go through the
directory and the data is passed between the caches.

Unlocking of locked lines by processors other than the one that performed the lock is allowed.
An ui,lock signal is sent to the directory which then forwards the signal to the downstream end of
the queue of caches. The signal flows upstream until it reaches the node with the locked line. This
facility is provided to allow migration of processes b. ween processors.

The advantages of this scheme are that except for replacements, lock requests are serviced in
FIFO order and starvation is eliminated if there is one process per cache and this solution requires
only O(N) operations4 . Details of the implementation of locks including handling of replacement
for the distributed directory scheme may be found in [15].

5 Conclusions and Future Work

The work presented in this paper represents a first step at evaluating a distributed directory pro-
tocol. To obtain more accurate results, simulations need to be done and so we are in the process
of developing a simulation model of the protocol. The distributed directory protocol presented in
this paper is an invalidate based protocol but update based and hybrid protocols are possible to
implement also. Hybrid protocols could update a part of the list and invalidate the rest. It would
be useful to determine the tradeoffs of such variations.

We have presented a new protocol for providing cache coherence in large scale shared memory
machines. A simple performance analysis of the protocol has given encouraging results. The
implementation of the protocol provides an efficient implementation of locks at minimal cost. The
scalability and cost benefits of the implementation provides us with en~ugh reasons to conclude
that the distributed directory protocol may be considered to be a possible solution for the cache
coherence problem in large scale shared memory multiprocessors.

Acknowledgements: We are thankful to Greg Byrd, Mike Flynn and Max Hailperin for their comments
and suggestions and to the members of the DEC High Performance Sstems Group and KSL for their
support.

'A somewhat similar scheme has been proposed by Goodman et.al.111]. However, their implementation requires
the interconnect to support global broadcasts and the transfer of the lock and data to the next cache in the queue
requires interactions with the main memory, resulting in more network traffic.
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1 Introduction NMI MODE2. NOOn

This paper describes a new solution for the cache co- P , P Z

herence problem in large scale shared memory multi-
processors. The protocol is based, on a linked list of C * C
caches - forming a distributed directory and (to ensure oou NC oou NC DOM NC

a scalable design) does not require a global broadcast
mechanism. Our solution has a lower cost and poten-
tially better performance than current solutions that
do not require a global broadcast. The performance of INTE.CONN-CnO4I&TWaK

the protocol is more robust when there is contention for
the data and for variations in memory technology. Fur-
ther, we do not assume that the network preserves the
order of messages. Thus we do not preclude adaptive Figure 1: The basic architecture
routing. Our solution also allows an efficient imple-
mentation of locks. otherwise). Centrilized directory based schemes [1, 6]

Cache coherence is an important well known problem are a possible solution in this environment.
in shared memory multiprocessor systems. If multi- We present some drawbacks of these schemes in sec-
pie caches are allowed to simultaneously have copies tion 2 and contrast them to an alternative, distributed
of a given memory location, a mechanism must ex- directory protocol, described in section 3. Section 4
ist to ensure that all copies remain consistent when states our conclusions and future work.
the contents of that memory location are modified.
Cache coherence protocols are well understood for bus-
based shared memory architectures [2]. These proto- 2 'What's Wrong W ith Central-
cols, called "snoopy" cache coherence protocols, require ized Directory Entries?
that each cache watch all traffic on the bus and take ap-
propriate action for addresses that are present in that
cache. Addresses are, in effect, transmitted to each We will assume a very general computing system
cache by global broadcast. The shared bus limits the structure in our discussions. Figure 1 describes this

number of processors to the number that can be con- basic architecture. Each node consists of one or more

nected to the bus without saturating it. To support processing elements (P), a cache (C), a network con-

scalable shared memory architectures, the cache coher- troller (NC) and part of the distributed global memory

ence protocol needs to be able to work in the absence (DGM). The DGM includes the directory.

of such a global broadcast mechanism (bus-based or In the directory based protocols there is a direc-
tory "tag" associated with each line in main memory.
This directory is used to hold-information about which
caches have copies of the line. In the fully mapped cen-
tralized directory scheme [6], the directory has N valid
(or "present") bits per line, where N is the number of
caches. The amount of storage needed for the directory
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in the fully mapped scheme is thus O(MN), where M scheme, where i is less than the number of caches and
is the size of main memory. If a cache has a copy of the NB stands for no'broadcast, is possible also. In such
line, the present bit corresponding to that cache is set. a scheme, at most i caches can have copies of a line at
The directory also has a dirty bit. If the dirty bit is the same time. In the case where a read miss occurs
set, only one of the caches can have a copy of the line. when i caches have copies of the line, the directory has

On, a read miss, the directory is checked to see if to invalidate one of the copies before the data can be

the block is dirty in another cache. If so, consistency supplied to the requesting cache. This might result in

is maintained by copying the dirty block back to the "thrashing' the line between caches.

memory before supplying the data. To ensure correct
operation, the memory line has to be "locked" by the
directory controller until the write-back signal is re- 3 How Would Distributed Di-
ceived from the cache with the dirty block. No other rectory Entries Be Better?
coherency-related operations on this line may be un-
dertaken while a line is locked. If the line is not dirty Based on a linked list of caches (4], we now define our
in another cache, then data is supplied from the main distributed directory protocol. For the distributed di-
memory and the corresponding present bit is set in the rectory protocol we do not assume that the network
directory. On a write miss, the central directory is preserves the order of messages. This allows adaptivechecked to determine the state of the line. If the line rsthe order eages This a o stvcheckedrouting (making network performance more robust).
is dirty in another czche, then the line is first flushed We are aware of no other directory based protocol pre-
from the cache before supplying the data. The mem-fromthecace bforesuplyig te daa. he em- viously described in the literature that allows out-of-
ory line is locked while this is being done. If the line is order message arrival.
clean in other caches, invalidate signals are sent to the o nder es rival.
caches. The memory line is locked until acknowledge- In our distributed directory protocol, caches that
ments are received from the caches. The data can then share data are linked together in a list. Each line in
be supplied to the requesting cache. the main memory and the cache has a cache-pointer

field associated with it. This pointer can address any
The locking of lines by the directory controller i - cache in the system. The directory services a read or

pacts the performance and design complexity of the write miss request hy changing the cache-pointer in the
cache coherence scheme. Requests that arrive while a drcoyetyascae ihteln opitt h
line is locked have to be either buffered at the direc- directory entry ,sssociated with the line to point to the

requesting cache. If the old value of the cache-pointer
tory, or else bounced back to the source to be reissued is nil, a reply is sent directly to the requesting cache.
at a later time. If the requests are buffered at the di- If the old value of the cache-pointer points to a cache,
rectory, the network traffic is lower. However, if the the request is forwarded to that cache. In case of read
buffer overflows, the requests still have to be bounced misses, that cache replies to the requesting cache, and
back. This complicates the design of the protocol (and the distributed list now includes the requesting cache.
the directory controller that implements it). Locking In case of write misses, the distributed list has to be
of the lines while servicing a request that requires a invalidated before a reply can be sent to the requesting
coherency-related transaction could make the direc- cache.
tory a bottleneck.

To reduce the amount of storage required, a number
of modifications to the above scheme may be made. 3.1 The Cost is Lower
However, these modifications either require the imple-
mentation of an efficient broadcast mechanism (contra- The amount of memory required for the cache-
dicting our assumption about scalable systems), or may pointer is log.N where V is the number of caches.
generate excess network traffic along with performance The total amount of memory needed is thus
penalties. For example, one simple modification is to O(M log N + Nc log .V) where M is the total size of
have i pointers per line in the directory. Each pointer main memory, N is the number of caches and c is the
may point to a cache that has a copy of the line. If size of each cache. The above expression can be writ-
more that i caches have copies of the line, a broadcast ten as O(M(I + k) log N) where k is .Vc/Nm (m being
has to be done to all caches to service a write miss. The the amount of memory per node). We interpret k as
memory line has to be locked until all caches acknowl- tile ratio of the size of cache memory per node to the
edge the invalidation. This is classified as a DiriB size of main memory per node.
scheme (1], where i is the number of indices kept in Assuming a constant value of k for the machine,
the directory and B stands for broadcast. A DirNB the amount of memory required for the distributed di-

rectory scheme is O(Mlog N). We can expect then
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Figure 3: Invalidations due to write misses

Figure 2: Linking of caches due to read misses

The directory does not send a reply directly to C2 since
that, using the same technology, the cost of imple- C1 may have written to the line locally. The cache-
menting the distributed directory scheme is signifi- pointer in the directory now points to C2. When Cl
cantly less than the fully mapped scheme-which re- receives the forwarded signal, it sends a reply to 02 and
quires O(MN) amount of memory. changes its state to shared. The reply includes the data

and the address of Cl. When C2 receives the reply, it
sets its cache-pointer to point to C1. Thus a linked list

3.2 Resource Utilization is Distributed is formed. Fig. 2(c) shows how C3 gets linked into the
list.

Write misses cause a write-miss signal to be sent to
In the distributed directory protocol, the informa- the directory. A line is allocated in the cache before

tion about which caches have copies of the data is the miss signal is sent. This line is used to buffer the
distributed among the cache lines. The servicing of write. Write buffering along with weak ordering [7, 9]
requests does not require any locking of lines as in allows the processor to proceed immediately without
the case of the centralized directory protocol. Direct stalling. A write is considered to be issued when a
cache-to-cache operations are used to send the replies write-miss is sent 1y the cache. A write is considered to
and none of the replies have to be serialized through be performed wh, n a write-miss-reply is received by the
the main memory. The centralized bottleneck which cache. A write-nhss-reply may consist of two signals as
is present in the centralized directory protocols is thus in the example blow. A fence (8] operation may be
eliminated or significantly reduced. used to ensure that all writes that have been issued

A line in cache memory is originally in state "in- by a processor are performed before that processor is
valid". A read or a write request from the processor allowed to proceed. If a copy of the line is not present
causes the state to change to "writing-or-reading" and in any other cache, the main memory directly sends
a read-miss or write-miss signal to be sent to the ap- a reply. Otherwise the copies of the line have to be
propriate main memory module. On a read-miss-reply, invalidated before a reply can be sent.
the value of the cache-pointer is set to be the address of Figure 3 shows the sequence of events that result
the cache sending the reply (the cache-pointer remains when multiple caches have a copy of the line and C4 has
nil if the reply was sent by the main memory). This a cache miss. The directory forwards the write miss sig-
causes a linked list of caches that contain the data in nal to the old head (C3) pointed to by the cache-pointer
shared state to be formed. and the cache-pointer is updated to point to C4. When

Figure 2 illustrates the process followed to set up the C3 receives the write-miss-forward signal, it invalidates
linked list. Consider the case where cache C1 has a read its copy and forwards the signal to C2. C3 also sends
miss for a line followed by caches C2 and C3. As show a write-miss-reply-data signal along with the requested
in fig. 2(a), cache Cl sends a read-miss signal to the data to the requesting cache C4. When C2 receives the
directory. The cache-pointer of the line in the directory write-miss-forward signal, it invalidates its copy and
is made to point to C1. Since no other cache has a forwards the signal to Cl. Since the cache-pointer of
copy of the line, the main memory sends a read-miss- Cl points to the directory, it can be determined locally
reply to C1. When Cl receives the reply, the line is that Cl is the tail of the list and a write-miss-reply-
loaded into the cache in state "exclusive". Now, when performed signal is sent to C4 after the data in C1 is
cache C2 sends a read-miss to the directory, a read- invalidated. C4 needs to receive both the write-miss-
miss-forward signal is sent to C1 as shown in fig. 2(b). reply-data and the write-mi§s-reply-performed signals
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before the write can be considered to be performed.
A cache line is in state "writing-or-reading' after a 12

read-miss or a write-mine has been generated and be- -.. CD no buff
fore a read-miss-reply or a write-miss-reply has been 10 CD with buff

received. If the line in the cache is in state "writing- D b

or-reading" and a read-miss-forward or a write-miss- DD no buff
forward signal is received, the forwarded signal is stored. 8 DD with buff

locally. This is done by writing the address of the re-
questing cache in the cache-pointer field of the cache 6-____.. ..
line and changing the state to note that a forwarded
signal has been stored. Such signals that are stored are 4
called pending signals and are serviced when the reply
to the local read or write miss is received. If multiple
transactions for the same line are pending, the caches 2 .
form a distributed queue of pending signals. The re-
quests are thus serviced in a pipelined manner rather 0
than causing contention at the directory as in the case
of the centralized directory protocol. 0 50 100 150

Replacement of lines that are part of a shared list is Number of writes that may be buffered
done by invalidating the lower portion of the list. If
care is not taken, the forwarding of signals may lead Figure 4: Performance comparison with and without
to deadlocks in the network since most network rout- write buffering
ing protocols assume that a message is consumed at its
destination. One way of taking care of potential dead-
locks is to use more than one logical network. Details of age) small. Additionally, we use write buffering along
the protocol including handling of potential races may with weak ordering to reduce the effect of sequential
be found in (10J. invalidation operations. Write buffering is frequently

As we have seen, when the directory controller re- used in uniprocessor systems to prevent the processor
ceives a write or read miss request, and the data is from stalling on i, write miss. The writes to memory
present in some cache(s), the request is forwarded to are buffered in the cache and the processor is allowed to
the head of the list. We do not have the problem of proceed. In multiprocessor systems, write buffering has
locking lines at the main memory, buffering the signals to be done with are to avoid unexpected consistency
and bouncing them to the sources as did the central- violations. The problem of write buffering in multipro-
ized directory protocols (as mentioned in section 2). cessors has been studied in considerable detail [7, 9].
Requests are serviced in a more decentralized fashion We studied the performance of the fully mapped cen-
and the replies do not have to be serialized through tralized directory protocol and the distributed direc-
the directory as in the case of the centralized direc- tory protocol by using an explicit partial differential
tory protocol. This helps to prevent the directory from equation (PDE) solver as a benchmark. A PDE algo-
becoming a potential bottleneck. rithm was chosen since they are widely used in scientific

and engineering communities in applications requiring
high performance computation (3]. Fully associative,

3.3 The Protocol Has Good Perfor- infinite caches were assumed for the simulation. The
mance data was uniformly distributed and the computational

threads were scheduled at random sites so as not to fa-
The distributed directory protocol has good perfor- vor the distributed directory protocol. Each node had
mance. The latency of write misses may be a possible one thread running on it. The same uniform distribu-
cause of concern since the invalidations of the caches tion of the data and random placement of the threads
linked in the list have to be done sequentially. However, was used for the comparisons. The simulation models
if the writes to a line occur frequently, the number of were built upon an event driven simulation environ-
caches that have to be invalidated between writes will ment that has been used for other studies of multi-
be small. Thus the cases when the latency is large processor operation (5]. A mesh topology with 32-bit
will be infrequent. Measurements on a range of appli- bidirectional channels was used for the network. The
cations (12] support the assertion that the number of memory line size was assumed to be 64 bytes and both
caches that have to be invalidated on writes is (on aver- the cache and the main memory were assumed to be 32
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bits wide. The SRAM cache to DRAM main memory
access ratio was assumed to be 1:10. The directories
for both the protocols was assumed to be implemented - CD 1:20

in SRAM whoee cycle time was taken to be 1 cycle. 3- .- CD 1:10

The network was assumed to transfer data between CD 1:5

neighboring nodes in 1 cycle. The simulation results DO 20

presented here were obtained by using 16-processor D D1:1

models. Preliminary results obtained for larger models,'
show that our results should scale for larger systems.

In the PDE algorithm used, for each element in the
data array, two writes may be buffered at each time
step before a fence operation is required. Figure 4 U1
shows the relative execution time versus the number 1 --

of elements per processor. The number of processors A
was kept constant. When there are multiple elements
being executed upon by a thread, writes for all the ele-
ments may be buffered at each time step before a fence
operation. For example when we have one element per 0
processor, two writes may be buffered before a fence 10 20 30 40 50 60 70
operation. If the number of elements per processor is Number of Elements per Processor
increased to four, eight writes may be buffered before
a fence operation and so on. Thus an increase in the Figure 5: Effect of varying SRAM to DRAM ratio
number of elements per processor implies an increase
in the size of the data set as well as an increase in the
number of writes that may be buffered. 4 Conclusions and Future Work

The distributed directory protocol with write buffer- We have presented a new protocol for providing cache
ing had the best performance for the experiments that coherence in large scale shared memory machines. Be-
were performed. In the case of small data sets, the sides savings in cost, the protocol also provides good
performance of the centralized directory protocol wasexceptionally poor due to contention at the centralized performance. Th0, protocol provides an efficient imple-
directory. The effect of this contention was reduced in mentation of locks at minimal cost [11]. The scalabil-the distributed directory protocol due to the use of the ity of the protocol provides us with enough reasons toresources in a more distributed manner as explained in conclude that the distributed directory protocol -mayrsorestin 3 a mrie b ributmoed nne aseprforman be considered to be a viable solution for the cache co-section 3.2. Write buffering improved the performance herence problem in large scale shared memory multi-
of both the protocols.

Figure 5 shows the effect of varying the SRAM to processors.

DRAM ratio. Write buffering was used for all the The distributed directory protocol presented in this

curves in figure 5. In the case of the centraliied di- paper is an invalidate based protocol but update based

rectory protocol, slower DRAM memory causes read and hiybrid protocols are possible to implement also.

and write misses to be serviced more slowly since all Hyfrid protocols could update a part of the list and
invalidate the rest. It would be useful to determine thereplies have to be sent by the slower main memory.

The slower DRAM memory also causes the contention tradeoffs of such variations.
at the main memory to increase in the case of the cen,.
tralized directory protocol, resulting in further degra- Acknowledgements: We are thankful to Mike
dation in performance. In the distributed directory Flynn, Greg Byrd and Max Hailperin for their com-
protocol cache-to-cache transfers are used most of the ments and suggestion and to the members of the DEC
time, and there is no centralized bottleneck at the main High Performance Systems Group and the Stanford
memory. Therefore, slower DRAM memory does not Knowledge Systems Lab for their support.
cause any significant degradation of performance. The
distributed directory protocol thus allows the use of
cheaper, larger and denser main memory without any References
significant degradation in performance.
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